publications

2023

  1. Chang models over derived models with supercompact measures
    Takehiko Gappo, Sandra Müller, and Grigor Sargsyan
    2023
  2. On ω-strongly measurable cardinals in \mathbbP_\max extensions
    Navin Aksornthong, Takehiko Gappo, James Holland, and Grigor Sargsyan
    2023
  3. Towards a generic absoluteness theorem for Chang models
    Sandra Müller, and Grigor Sargsyan
    2023
  4. Determinacy in the Chang model
    Takehiko Gappo, and Grigor Sargsyan
    2023
  5. Forcing More DC Over the Chang Model Using the Thorn Sequence
    James Holland, and Grigor Sargsyan
    2023
  6. Negative results on precipitous ideals on \(\omega_1\)
    Grigor Sargsyan
    J. Symb. Log., 2023

2022

  1. Suslin cardinals and cutpoints in mouse limits
    Stephan Jackson, Grigor Sargsyan, and John Steel
    2022
  2. Ideals and Strong Axioms of Determinacy
    Dominik Adolf, Grigor Sargsyan, Nam Trang, Trevor Wilson, and Martin Zeman
    2022
  3. Hjorth’s reflection argument
    Grigor Sargsyan
    2022
  4. Unreachability of Pointclasses in L(\mathbbR)
    Derek Levinson, Itay Neeman, and Grigor Sargsyan
    2022
  5. On the derived models of self-iterable universes
    Takehiko Gappo, and Grigor Sargsyan
    Proc. Am. Math. Soc., 2022

2021

  1. The Largest Suslin Axiom
    Grigor Sargsyan, and Nam Trang
    2021
  2. The exact strength of generic absoluteness for the universally Baire sets
    Grigor Sargsyan, and Nam Trang
    2021
  3. Varsovian models II
    Grigor Sargsyan, Ralf Schindler, and Farmer Schlutzenberg
    2021
  4. Failures of square in Pmax extensions of Chang models
    Paul B. Larson, and Grigor Sargsyan
    2021
  5. Sealing of the universally Baire sets
    Grigor Sargsyan, and Nam Trang
    Bull. Symb. Log., 2021
  6. HOD in inner models with Woodin cardinals
    Sandra Müller, and Grigor Sargsyan
    J. Symb. Log., 2021
  7. Covering with Chang models over derived models
    Grigor Sargsyan
    Adv. Math., 2021
    Id/No 107717
  8. Sealing from iterability
    Grigor Sargsyan, and Nam Trang
    Trans. Am. Math. Soc., Ser. B, 2021
  9. \(AD_R\) implies that all sets of reals are \(Θ\) universally Baire
    Grigor Sargsyan
    Arch. Math. Logic, 2021

2020

  1. Trends in set theory. Simon Fest conference in honor of Simon Thomas’s 60th birthday, Rutgers University, Piscataway, New Jersey, USA, September 15–17, 2017
    2020

2019

  1. An inner model theoretic proof of Becker’s theorem
    Grigor Sargsyan
    Arch. Math. Logic, 2019
  2. Derived models of mice below the least fixpoint of the Solovay sequence
    Dominik Adolf, and Grigor Sargsyan
    J. Symb. Log., 2019
  3. Hod up to \(AD_R\) + Θ is measurable
    Rachid Atmai, and Grigor Sargsyan
    Ann. Pure Appl. Logic, 2019

2018

  1. Varsovian models. I
    Grigor Sargsyan, and Ralf Schindler
    J. Symb. Log., 2018

2017

  1. Translation procedures in descriptive inner model theory
    Grigor Sargsyan
    In Foundations of mathematics. Logic at Harvard. Essays in honor of W. Hugh Woodin’s 60th birthday. Proceedings of the Logic at Harvard conference, Harvard University, Cambridge, MA, USA, March 27–29, 2015, 2017
  2. Square principles in P_max extensions
    Andrés Eduardo Caicedo, Paul Larson, Grigor Sargsyan, Ralf Schindler, John Steel, and Martin Zeman
    Isr. J. Math., 2017

2016

  1. Tame failures of the unique branch hypothesis and models of \(AD_R+Θ\) is regular
    Grigor Sargsyan, and Nam Trang
    J. Math. Log., 2016
    Id/No 1650007

2015

  1. Hod mice and the mouse set conjecture
    Grigor Sargsyan
    2015
  2. The mouse set conjecture for sets of reals
    Grigor Sargsyan, and John Steel
    J. Symb. Log., 2015
  3. Covering with universally Baire operators
    Grigor Sargsyan
    Adv. Math., 2015

2014

  1. An inner model proof of the strong partition property for \(\delta_1^2\)
    Grigor Sargsyan
    Notre Dame J. Formal Logic, 2014
  2. Nontame mouse from the failure of square at a singular strong limit cardinal
    Grigor Sargsyan
    J. Math. Log., 2014
    Id/No 1450003
  3. Non-tame mice from tame failures of the unique branch hypothesis
    Grigor Sargsyan, and Nam Trang
    Can. J. Math., 2014

2013

  1. Book review of: Alexander S. Kechris (ed.), Benedikt Löwe (ed.) and John R. Steel (ed.): Wadge degrees and projective ordinals. The Cabal Seminar, Volume II
    Grigor Sargsyan
    Bull. Symb. Log., 2013
  2. On the prewellorderings associated with the directed systems of mice
    Grigor Sargsyan
    J. Symb. Log., 2013
  3. Descriptive inner model theory
    Grigor Sargsyan
    Bull. Symb. Log., 2013

2012

  1. Indestructible strong compactness but not supercompactness
    Arthur W. Apter, Moti Gitik, and Grigor Sargsyan
    Ann. Pure Appl. Logic, 2012

2010

  1. An equiconsistency for universal indestructibility
    Arthur W. Apter, and Grigor Sargsyan
    J. Symb. Log., 2010

2009

  1. On the indestructibility aspects of identity crisis
    Grigor Sargsyan
    Arch. Math. Logic, 2009

2008

  1. On HOD-supercompactness
    Grigor Sargsyan
    Arch. Math. Logic, 2008
  2. Universal indestructibility for degrees of supercompactness and strongly compact cardinals
    Arthur W. Apter, and Grigor Sargsyan
    Arch. Math. Logic, 2008

2007

  1. A reduction in consistency strength for universal indestructibility
    Arthur W. Apter, and Grigor Sargsyan
    Bull. Pol. Acad. Sci., Math., 2007

2006

  1. Identity crises and strong compactness. III: Woodin cardinals
    Arthur W. Apter, and Grigor Sargsyan
    Arch. Math. Logic, 2006

2005

  1. Can a large cardinal be forced from a condition implying its negation?
    Arthur W. Apter, and Grigor Sargsyan
    Proc. Am. Math. Soc., 2005

2004

  1. Jonsson-like partition relations and \(j:V\to V\).
    Arthur W. Apter, and Grigor Sargsyan
    J. Symb. Log., 2004