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Introduction

One aspect of the equivalence between large cardinal
hypotheses and determinacy hypotheses is captured by:

Problem: Analyze HOD in models of determinacy.

Post-1970 work on it has been done by Becker,
Harrington, Kechris, Martin, Moschovakis, Sargsyan,
Solovay, Steel, Woodin, and others.

Main methods: descriptive set theory (games and
definable scales) and inner model theory (mice and
iteration strategies).
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Conjecture 1. Assume AD+ + V = L(P(R)); then
HOD |= GCH.

Conjecture 2. There is M |= AD+ + V = L(P(R)) such
that HODM |= “there is a huge cardinal”.

Recent (2015-present) progress on these conjectures
has come from isolating the notion of mouse pair, and
proving a general comparison theorem for them. Modulo
the existence of iteration strategies, mouse pairs can be
used to analyze HOD.
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A Glossary

(a) An extender E over M is a system of measures on M
coding an elementary iE : M → Ult(M,E). E is short
iff all its component measures concentrate on crit(iE ).
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M agrees with Ult(M,E) and Ult(N,E) to (λ+)Ult(M,E).
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(b) A normal iteration tree on M is an iteration tree T on
M in which the extenders used have increasing
strengths, and are applied to the longest possible
initial segment of the earliest possible model. (So
along branches of T , generators are not moved.)
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(c) An M-stack is a sequence s = 〈T0, ..., Tn〉 of normal
trees such that T0 is on M, and Ti+1 is on the last
model of Ti .
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(d) An iteration strategy Σ for M is a function that is
defined on M-stacks s that are by Σ whose last tree
has limit length, and picks a cofinal wellfounded
branch of that tree.

(e) If s is an M-stack, then Σs is the tail strategy given by
Σs(t) = Σ(s_t).

(f) It π : M → N is elementary, and Σ is an iteration
strategy for N, then Σπ is the pullback strategy given
by: Σπ(s) = Σ(πs).
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Mouse pairs

Definition
(a) A pure extender premouse is a structure M con-

structed from a coherent sequence Ė
M

of extenders.

(b) A least branch premouse (lpm) is a structureM con-
structed from a coherent sequence Ė

M
of extenders,

and a predicate Σ̇
M

for an iteration strategy forM.

Remarks
(a) M has a hierarchy, and a fine structure.

(b) We use Jensen indexing for the extenders in Ė
M

.
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(c) At strategy-active stages in an lpm, we tellM the
value of Σ̇

M
(T ), where T is theM-least tree such

that Σ̇
M

(T ) is currently undefined. (Woodin,
Schlutzenberg-Trang.

)

Definition
A mouse pair is a pair (P,Σ) such that
(1) P is a countable premouse (pure extender or least

branch),
(2) Σ is an iteration strategy defined on all countable

stacks on P,
(3) Σ normalizes well and has strong hull condensation,

and
(4) if P is an lpm, then whenever Q is a Σ-iterate of P via

s, then Σ̇
Q ⊆ Σs.
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Strong hull condensation

Roughly, Σ has strong hull condensation iff T and U are
normal trees on P, and U is by Σ, and Φ: T → U is
appropriately elementary, then T is by Σ.

One must be careful about the elementarity required of Φ,
and in particular, the extent to which Φ is required to
preserve exit extenders. There are several possible
condensation properties here: hull condensation
(Sargsyan), strong hull condensation, and still stronger
ones.
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Normalizing well
For 〈T ,U〉 a stack on P, there is a natural normal tree
W = W (T ,U) obtained by inserting the extenders of U
into T . We have

P Q R

S

iT iU

i W
π

Then Σ 2-normalizes well iff

〈T ,U〉 is by Σ iff W (T ,U) is by Σ,

and
Σπ
〈W〉 = Σ〈T ,U〉.

for all such stacks 〈T ,U〉.
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One can extend the construction of W (T ,U) so as to
define the embedding normalization W (s) of a countable
stack of normal trees. One has an elementary π from the
last model of s to the last model of W (s). If one has

s is by Σ iff W (s) is by Σ,

and
Σπ
〈W(s)〉 = Σs.

for all such stacks 〈T ,U〉, and the same is true for all tails
of Σ, then we say that Σ normalizes well.

Theorem
(Schlutzenberg 2015) Let Σ be a strategy defined on
normal trees, and have strong hull condensation; then Σ
has a unique extension Ψ to stacks of normal trees such
that Ψ has strong hull condensation and normalizes well.
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Elementary properties of mouse pairs
Definition
π : (P,Σ)→ (Q,Ψ) is elementary iff π : P → Q is Σk
elementary, where k = k(P), and Σ = Ψπ.

Lemma
An elementary submodel of a mouse pair is a mouse pair.

Definition
(Q,Ψ) is an iterate of (P,Σ) iff there is a stack s by Σ with
last model Q, and Ψ = Σs.

Lemma
(Iteration maps are elementary) Let (P,Σ) be a mouse
pair, and let s be a stack by Σ giving rise to the iteration
map π : P → Q; then (Σs)π = Σ.

Lemma
(Dodd-Jensen) The Σ-iteration map from (P,Σ) to (Q,Ψ)
is the pointwise minimal elementary embedding of (P,Σ)
into (Q,Ψ).
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Comparison

Theorem (Comparison)
Assume AD+, and let (P,Σ) and (Q,Ψ) be mouse pairs
of the same type; then they have a common iterate (R,Φ)
such that at least one of P-to-R and Q-to-R does not
drop.

Definition
(Mouse order) (P,Σ) ≤∗ (Q,Ψ) iff (P,Σ) embeds
elementarily into some iterate of (Q,Ψ).

Corollary
Assume AD+; then the mouse order ≤∗ on mouse pairs
of a fixed type is a prewellorder.
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Phalanx comparisons work too. From this we get

Theorem
Assume AD+, and let (P,Σ) be a mouse pair; then the
standard parameter of P is solid and universal, and
hence (P,Σ) has a core.

Theorem
Assume AD+, and let N be a countable, iterable, coarse
Γ-Woodin model; then the hod pair construction of N
does not break down.

Theorem
Suppose that V is uniquely iterable, and there are
arbitrarliy large Woodin cardinals; then the hod pair
construction of V does not break down.
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Phalanx comparisons also yield Condensation, and

Theorem
(Trang, S., 2017) Assume AD+, and let (P,Σ) be a
mouse pair; then P |= ∀κ(�κ ⇔ κ is not subcompact).

Phalanx comparisons also give

Theorem
Assume AD+, and let (P,Σ) be a mouse pair; then
(1) Σ is positional,
(2) Σ has very strong hull condensation, and
(3) Σ fully normalizes well.
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Hod pair capturing
Least branch hod pairs can be used to compute HOD,
provided that there are enough of them.

Definition
(AD+) HOD pair capturing (HPC) is the statement: for
every Suslin, co-Suslin set of reals A, there is an lbr hod
pair (P,Σ) with scope HC such that A is Wadge reducible
to Code(Σ).

Remark. Under AD+, if (P,Σ) is a mouse pair, then
Code(Σ) is Suslin and co-Suslin.

Theorem
Assume AD+, and that there is an iterable premouse with
a long extender. Let Γ ⊆ P(R) be such that
L(Γ,R) |= NLE ; then L(Γ,R) |= HPC.
Here NLE (“No long extenders”) is the assertion: there is
no countable, iterable pure extender mouse with a long
extender on its sequence.
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In light of this theorem, the following is almost certainly
true:

Conjecture. (AD+ + NLE)⇒ HPC.

HPC holds in the minimal model of ADR + θ is regular,
and somewhat beyond, by Sargsyan’s work.
HPC localizes:

Theorem
Assume AD+ + HPC, and let Γ ⊆ P(R); then
L(Γ,R) |= HPC.
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Definition
(AD+) For (P,Σ) a mouse pair, M∞(P,Σ) is the direct
limit of all nondropping Σ-iterates of P, under the maps
given by comparisons.

M∞(P,Σ) is well-defined by the Dodd-Jensen lemma.
Moreover, it is OD from the rank of (P,Σ) in the mouse
order. Thus M∞(P,Σ) ∈ HOD. It is an initial segment of
the lpm hierarchy of HOD if (P,Σ) is “full”.

Definition
A mouse pair (P,Σ) is full iff for all mouse pairs (Q,Ψ)
such that (P,Σ) ≤∗ (Q,Ψ), we have
M∞(P,Σ) � M∞(Q,Ψ).
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Theorem
Assume ADR + HPC; then HOD |θ is the union of all
M∞(P,Σ) such that (P,Σ) is a full lbr hod pair.

Theorem
Assume AD+ + V = L(P(R)) + HPC; then HOD |θ is an
lpm. Thus HOD |= GCH.

The construction of Suslin representations for the
iteration strategies in mouse pairs plays an important role
in many of the proofs above.
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Suslin representations for mouse pairs

Let (P,Σ) be a mouse pair. A tree T by Σ is M∞-relevant
iff there is a normal U by Σ extending T with last model Q
such that the branch P-to-Q does not drop. Σrel is the
restriction of Σ to M∞-relevant trees.
Recall that A is κ-Suslin iff A = p[T ] for some tree T on
ω × κ.

Theorem
(AD+) Let (P,Σ) be an lbr hod pair with scope HC; then
Code(Σrel) is κ-Suslin, for κ = |M∞(P,Σ)|.

Remark. Code(Σrel) is not α-Suslin, for any
α < |M∞(P,Σ)|, by Kunen-Martin. So |M∞(P,Σ)| is a
Suslin cardinal.
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Remark. Code(Σrel) is not α-Suslin, for any
α < |M∞(P,Σ)|, by Kunen-Martin. So |M∞(P,Σ)| is a
Suslin cardinal.
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Proof sketch. M∞(P,Σ) is the direct limit along a generic
stack s of trees by Σ.

But s can be fully normalized, so
there is a single normal treeW on P with last model
M∞(P,Σ) such that every countable “weak hull” ofW is
by Σ.But then for T countable and M∞-relevant,

T is by Σ⇔ T is a weak hull ofW.

The right-to-left direction follows from very strong hull
condensation for Σ.
For left-to-right direction, we may assume T has last
model Q, and P-to-Q does not drop. We then have a
normal U on Q with last model M∞(P,Σ) such that all
countable weak hulls of U are by Σ.
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We have

P M∞(P,Σ)

Q

W

T U

Then
W = X (T ,U)

is the full normalization of 〈T ,U〉. The construction of
X (T ,U) produces a weak hull embedding from T into
X (T ,U), which is what we want.

Thus our Suslin representation verifies that T is in the
M∞-relevant part of Σ by producing a weak hull
embedding of T intoW.
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Characterizing the Woodins of HOD
Recall the Solovay sequence: θ0 is the sup of the lengths
of OD prewellorders of R, θα+1 is the sup of the OD(A)
prewellorders, for any and all A of Wadge rank θα, and
θλ =

⋃
α<λ θα for λ a limit.

Definition
κ is a cutpoint of a premouseM iff there is no extender E
on theM-sequence such that crit(E) < κ ≤ lh(E).

Theorem
Assume AD+ + V = L(P(R)) + HPC; then equivalent are:
(a) δ is a cutpoint Woodin cardinal of HOD,
(b) δ = θ0, or δ = θα+1 for some α.

Thus θ0 is the least Woodin cardinal of HOD.

Remark. Woodin showed θ0 and the θα+1 are Woodin in
HOD. He proved an approximation to their being
cutpoints.
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Theorem
Assume ADR + HPC, and let κ be a successor cardinal of
HOD such that κ < θ. Let

δ = sup({|S| | S is an OD prewellorder of ωκ }).

Then δ is the least Woodin cardinal of HOD above κ.

Remark. This was conjectured by Sargsyan.
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Suslin cardinals and mouse-limits

Theorem
Let (P,Σ) be a mouse pair, and let τ be a cutpoint of
M∞(P,Σ); then |τ | is a Suslin cardinal.

Theorem (Jackson, Sargsyan 2018-2019)
Let (P,Σ) be a mouse pair, and let κ < o(M∞(P,Σ)) be a
Suslin cardinal; then κ = |τ | for some cutpoint τ of
M∞(P,Σ).

Corollary
Assume AD+ + HPC; then equivalent are
(a) κ is a Suslin cardinal,
(b) κ = |τ |, for some cutpoint τ of HOD.
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The Jackson-Sargsyan proof breaks into two results

Theorem (Sargsyan 2018)
Let (P,Σ) be a mouse pair, and α = crit(E), where E is a
total extender on the sequence of M = M∞(P,Σ); then
there is a countably complete V-ultrafilter U on α such
that iME (α) ≤ iVU (α).

Theorem (Jackson 2019)
Let κ be a regular Suslin cardinal, and U an ultrafilter
concentrating on some α < κ; then iU(α) < κ

Corollary (Jackson,Sargsyan)
Assume ADR + HPC; then every regular Suslin cardinal is
a cutpoint of HOD.
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We conjecture that this holds for singular Suslins as well.

Conjecture. Let (P,Σ) be a mouse pair, and κ be a
Suslin cardinal such that κ < o(M∞(P,Σ)); then κ is a
cutpoint of M∞(P,Σ).

The conjecture implies that under AD+ + HPC, the Suslin
cardinals of V are precisely the cardinals of V that are
cutpoints in HOD.

The case still open is when κ is the next Suslin cardinal
after some regular Suslin (so cof(κ) = ω).

Thank you!
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