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• Do syntactic features supervene or in some sense can be read
off semantic ones?

• How to recover syntax from semantic information?



Introduction Spectra Logicality Symbiosis Games

Foundations of mathematics

• The question whether syntactic features supervene or in some
sense can be recovered from semantic ones, can be posed in
the foundations of mathematics context.

• In particular we ask the question, whether and under what
conditions a given model class K has a natural or implicit
logic; or even a natural syntax.

• A model class is a class of structures of the same similarity
type, but possibly of different cardinalities, that is closed
under isomorphism.
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This is part of the formalism freeness project, in which we studied
the degree of entanglement of canonical mathematical structures
with various canonical formal theories.

The idea here is that small changes in syntax (or more generally
any perturbation in the framework) can induce massive effects,
while on the other hand large perturbations in the framework, such
as a change of logic, can have no effect on the relevant object.



Introduction Spectra Logicality Symbiosis Games

For example, zero-one laws* for finite structures are sensitive to
signature in the sense that relational structures satisfy the
beautiful zero-one law, but once one adds function symbols to the
language, even the simple sentence ∃x(f (x) = x) has limit
probability 1/e. (Theorem is due to Fagin.)
On the other hand many mathematical objects are indifferent to
the underlying logic with which they are formalised, in the sense
that one can change the underlying logic to another very different
logic, but the object remains the same. Gödel’s L for example, is
built over first order logic; but there is a very large class of logics
that one can use to build the constructible sets, and still L stays
the same.
(*The probability of a random relational structure on the domain
1, . . . , n satisfying a given first order formula tends to either 0 or
1 as n tends to infinity)
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This instability is interesting as mathematics as it is generally
practiced is impervious to these framework perturbations. The
natural language of the mathematician contains typically a mixture
of logical idioms.
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Instead of tracking syntactic variation in this way, here we consider
the following situation: a class of structures equipped with no
syntax, and there is no logic in the backgroud. (Though a model
class does come with a vocabulary or similarity type.)
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• Model classes are a fundamental object of study in everyday
mathematics.

• Some model classes: groups, linear orders, free groups, fields,
ordered fields, equivalence relations, vector spaces. (In logic:
models of arithmetic, well-orders, transitive models of ZFC,
etc.)

• We consider model classes in order to mod out the “noise”
coming from individual structures. (Individual structures may
have accidental properties leading to “accidental syntax”.)
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• In this talk I will explore this question from the point of view
of some model theoretic developments, both recent and not.

• One question we are asking is whether syntax is part of the
definition of a logic at all.
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An early example of recovering syntax from semantics:
extracting the proposition from a truth table
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Disjunctive Normal Form in propositional logic

p q r f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

f = (¬p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r)
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First answer to the question, when does a model class have
a syntax?

• When it is definable in a logic with syntax.1

• Example: the class of linear orders is definable in first order
logic.

1Not every logic has a nontrivial syntax, e.g. Shelah’s L1
κ.
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• K = Mod(φ) for φ a sentence of some logic L∗.
• Van Heijenoort: “The proposition [in the abstract logic

approach JK] remains unanalyzed, being reduced to a mere
truth value.”2

• Here the proposition is reduced to (identified with) its class of
models.

2“Logic as calculus, logic as language,” [van Heijenoort, 1967].
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Second answer to the question, when does a model class
have a syntax?

• When the model class behaves as if it had a syntax in the
sense of answer 1, that is, if some consequences of having a
syntax can be detected.

• If a model class K does not have those consequences, it
probably does not arise from a logic with syntax.3

3“Arise” means K = Mod(φ), where φ is in the logic.
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Part 1: Spectra

In order to find out whether a model class is definable in some
interesting logic, it is useful to investigate the cardinalities of
models in the class. One might think that mere cardinalities are
too rough a measure of any form of logicality but this is, in fact,
surprisingly informative. This approach leads us to the concept of
a spectrum:4

Definition
If K is a model class, the spectrum of K is the class sp(K) of
cardinalities of models in K i.e.

sp(K) = {|M| :M∈ K}.

4See also [Sagi, 2018].
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• Depending on K, the spectrum can be a singleton, an interval
of cardinals, an initial (or final) segment of the class of all
cardinals, or something more complicated, such as the class of
all limit cardinals, or all limit cardinals of cofinality ω.5

• Even the patterns of finite numbers in spectra of first order
sentences is highly interesting.6 However, we are here
concerned with infinite cardinals in a spectrum.

5In fact any set of cardinals can be the spectrum of a logic via a generalized
quantifier.

6Related to open questions in computational complexity such as P=NP?
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Figure: Spectra of some model classes.
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• The property of a logic which reflects regularity patterns in its
spectra is captured by the Löwenheim-Skolem Theorem.

• The spectrum gives indirect information regarding the
possibility that the model class is definable in some
(nontrivial) logic.

• Roughly speaking, if the logic has a strong Löwenheim-Skolem
property, then the spectra of definable model classes reflect
this.

• If every sentence in the logic which has an infinite model has
also a countably infinite model, the most famous case of a
Löwenheim-Skolem property, then every spectrum with an
infinite cardinal in it has also ℵ0 in it.
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LS(C ,D)

Definition
Suppose C and D are classes of cardinal numbers. A logic L∗

satisfies the Löwenheim-Skolem Property LS(C ,D) if every
sentence in L∗ which has a model of some cardinality in C has a
model of some cardinality in D.

Skolem proved that first order logic satisfies LS([ℵ0,∞), {ℵ0}):
countable first order theories have countably infinite models if they
have infinite models at all.
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A simple observation

If a logic satisfies LS(C ,D), there are consequences for the spectra
of definable model classes. Suppose K is definable in a logic with
LS(C ,D). Then we can make the following conclusions: If there is
M∈ K with |M| ∈ C , then there is N ∈ K with |N| ∈ D.

On the other hand, if K contains a model of cardinality κ but no
models of cardinality λ, then K cannot be definable in a logic with
LS(C ,D) such that κ ∈ C and λ ∈ D. The point is that by
looking at the spectrum of K we can make inferences about its
definability in different logics.
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Thus, if we are given a model class K but no logic in which it
would be definable (apart from the trivial L(QK), see below), and
we can discern regular patterns in sp(K), we may take it as an
indirect indication (albeit not a proof) that K is definable in a logic
with LS(C ,D) for some C and D explaining the found patterns.

On the other hand, if sp(K) is irregular, we may take it as an
indication that no such logic can be found. (Incidentally, the
spectra for second order logic can be very interesting, as the Hanf
and Löwenheim numbers for second order logic are in the range of
supercompact cardinals, if such exist.)

Thus sp(K) gives implicit information about the possibility of
finding a syntax for K.
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Figure: Regular and irregular spectrum.
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Necessary, but not sufficient

A counterexample:

K = {(α + α,<) : α ∈ Ord} has a nice spectrum but it is not
definable in L∞,∞.7 However, it is definable using the game
quantifier ∀x0∃x1∀x2∃x3 . . .

∧
n φ(x0, . . . , xn).

7[Malitz, 1971].
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Spectra for second order logic

Any class of successors of regular cardinals can be the spectrum of
a second order sentence.

This follows from Easton’s theorem8 and from the fact that second
order logic can detect whether 2κ = κ+ or = κ++ for cardinals
below the size of the domain.

Can then write a sentence which has models exactly when
2κ = κ+.The sentence has a unary predicate P and a binary predicate symbol <. It says that < is a a

well-order of the domain of type |P|+, with the restriction of < ordering P in the type of a regular cardinal, and

that there is a function from the domain to subsets of P with every subset of P in its range.

8Suppose D is any class of successors of regular cardinals. Easton’s
Theorem says that there is such a forcing extension which forces 2κ = κ+ for
κ+ ∈ D and 2κ = κ++ for regular κ with κ+ /∈ D.
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Restrictions on spectra of second order sentences

Theorem
If a second order spectrum contains a measurable cardinal κ, it
contains a stationary set of cardinals below κ.

Proof.
Suppose a measurable cardinal κ, with a normal9 ultrafilter U, is in the spectrum of a second order sentence φ.
Thus there is a model A of φ of cardinality κ. W.l.o.g., A = κ. Let i : V → M be an elementary embedding of V
into a transitive class M such that κ is the critical point of i and Mκ ⊆ M. In particular, A ∈ M. In M the
sentence φ has a model, namely A which is smaller than i(κ). It follows that the set of λ < κ such that φ has a
model of cardinality λ is stationary. A subtle point: Why does A still satisfy φ in M? This is because M is closed
under κ-sequences, i.e. second order truth is preserved in the passage from A to M.

Corollary

A measurable cardinal cannot be the smallest element in a second
order spectrum.

9
I.e. if f : A→ κ is pressing down and A ∈ U, then there is B ⊆ A such that B ∈ U and f � B is constant.
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Theorem (Magidor)

Suppose κ is supercompact.10 No non-empty second order
spectrum can consist only of cardinals ≥ κ.

Proof.
Suppose C is the spectrum with an element λ ≥ κ. Suppose C is
the spectrum of the second order sentence φ. Thus φ has a model
A of size λ. By Magidor’s Löwenheim-Skolem Theorem for second
order logic A has a second order elementary submodel B of
cardinality µ < κ. But then µ ∈ C , contrary to the
assumption.

10
I.e. for any λ > κ there is an elementary embedding i : V → M such that κ is the critical point and

Mλ ⊆ M.
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We have said. . .

While Easton’s Theorem gives a lot of flexibility for second order
spectra, there are restrictions imposed by large cardinals:

• Measurable cardinals in the spectrum have to have
accumulation points.

• The spectra cannot live completely above a supercompact
cardinal.

There are many other restrictions.
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Structure!

• If φ is a second order sentence, recall that we defined

Spec(φ) = {|M| : M |= φ}.

• Since we can quantify over predicates, we may assume,
w.l.o.g., that the vocabulary of φ is ∅. Hence the complement
of a second order spectrum is also a spectrum. (Observed by
various people including Durand et al.)

• For the finite parts of first order spectra this is a famous open
problem (“Asser’s Problem”).
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Second order spectra are not only closed under
complement. . .

• The second order spectra form an infinite atomic Boolean
algebra B. Such are all first order elementarily equivalent, so
the complete theory of any one of them is decidable (Tarski).

• The Boolean algebra B can be obtained as follows: Define
φ ∼ ψ if Spec(φ) = Spec(ψ). B is isomorphic to the natural
Boolean algebra obtained from the set of all [φ] where φ ∈ L2

has empty vocabulary. From spectra back to syntax!

• −[φ] = [¬φ], [φ] ∧ [ψ] = [φ ∧ ψ].
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• As we noted, second order spectra can be complicated: For
any A ⊆ ω there is a forcing extension in which {ℵn|n ∈ A} is
a second order spectrum.

• There is a second order φ such that if 0] exists, then
0] ≤1 {n < ω : ℵn ∈ Spec(φ)}.11

• Let SpecL(φ) be the cardinals κ for which φ has a model of
size κ in Gödel’s L, in the sense of L.

• Assume 0]. Some cardinal ℵn, n > 0, is in SpecL(φ) iff every
ℵn, n > 0, is. (The ℵn’s are indiscernables in L.)

11Identify 0] with the set of Gödel number of formulas φ(v1, ..., vk) such that
L |= φ(ℵ1, ...,ℵk). The sentence φ says “the cardinality of the universe is a
cardinal of the form ℵn, where n codes a pair (m, k) such that the m:th
formula of set theory is satisfied in L by ℵ1, ...,ℵk . Now, if φ(v1, ..., vk) is given,
we map its Gödel number m one-one to the number n which codes m and k
and we ask whether n is in {n < ω : ℵn ∈ Spec(φ)}.
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Wolves?

The topic of second order spectra is mathematically rich. There
are constraints on such spectra, and there is structure. If
entanglement were malevolent, one would expect completely wild
behavior instead of this mathematical richness.
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Part 2: Logicality

Recall our answer to the question, when does a model class have a
syntax:

When it is definable in a logic with syntax.
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Every model class trivially gives rise to a logic

Note that every model class is definable in some logic because we
can take the model class as a generalized quantifier in the sense of
P. Lindström [Lindström, 1966], and then K is definable in
FO(QK).
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Per Lindström

Suppose K is a model class with vocabulary L. For simplicity we
assume L = {R} where R is a binary predicate symbol. We can
associate with K the generalized quantifier QK with the semantics

M |= QKxyφ(x , y , ~a) ⇐⇒

(M, {(b, c) ∈ M2 :M |= φ(b, c , ~a)}) ∈ K.

Now K is definable in FO(QK) by the sentence QKxyR(x , y).
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A minimal logic is one consisting of just atomic formulas. That is,
for every n-ary predicate symbol R there should be a formula
φR(x1, ..., xn) (usually denoted R(x1, ..., xn)) in the logic such that
for all a1, ..., an ∈ M:

M |= φR(a1, ..., an) ⇐⇒ (a1, ..., an) ∈ RM,

and for any two terms t and t ′ in the variables x1, ..., xn there
should be a formula ψt,t′(x1, ..., xn) (usually denoted t = t ′) in the
logic such that for all a1, ..., an ∈ M:

M |= ψt,t′(a1, ..., an) ⇐⇒ tM(a1, ..., an) = t ′
M

(a1, ..., an).

Let us denote this logic At. If K is a model class and we add QK
to the logic At, we obtain the smallest logic At(QK) in which K is
definable, as for M = (M,RM):

M∈ K ⇐⇒ M |= QKxyR(x , y).
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After obtaining the minimal logic At we can add the propositional
operations. If we then add existential and universal quantifiers we
obtain first order logic FO.
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Since K is closed under isomorphism, FO(QK) is a logic in the
sense of Lindström:

Definition ([Lindström, 1969])

An abstract logic (or just a logic) is a pair L = 〈S ,T 〉, where S is
a set (non-empty) and T is a binary (class) predicate holding
between models (i.e. domains equipped with relations) and
elements of S . If the pair (A, φ) is in T and A ∼= B, then also the
pair (B, φ) is in T (isomorphism closure). The elements of S are
called “L − sentences” and T is called the “truth-predicate of L.”
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Miettinen, Lindström, Krynicki, Jensen, Westerst̊ahl
Oulu Summer School on Mathematical Logic 1974
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What does it mean for an abstract logic to have a syntax?

• For an abstract logic 〈S ,T 〉 to have a syntax we need to say
what having a syntax means.

• There is the trivial solution of simply listing the elements of S ,
the L-“sentences”.

• This is unsatisfactory. The syntax of e.g. English is not the
list of all English sentences.
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A better trivial solution

• Take the generalized quantifier QK for each
K = Mod(φ), φ ∈ S .

• The resulting logic L′ = FO({QK : K = Mod(φ), φ ∈ S}) is
equivalent to L in the sense that L and L′ have the same
definable model classes.12

• This is only a slight improvement from the previous “listing”
solution.

• If a logic has a syntax there should be other consequences
besides generating the definable model classes.

12Assuming L is closed under substitution in an exact sense.
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• The natural idea is that the syntax consists of a small number
of logical operations which generate S in a ‘recursive’ way.

• This is an apparently syntactic notion, but we can view the
notion of “logical operation” semantically.
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Logical operations can be viewed as model classes

Disjunction as a model class:

K∨ = {(M,P0,P1,P) : P0 ∪ P1 = P ⊆ Mn}

Simpler: the class of unary models (i.e. the generalized quantifier
consisting of models) (M,A), where A ⊆ M, AM non-empty, and
the class of (M,A), where AM is equal to M. On the side of
syntax these would correspond to the existential and the universal
quantifiers.
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In general

Logical operations (viewed semantically) map semantic values to
semantic values. : Suppose M is a non-empty set. By the
semantic value (on M) of a formula (of any logic) we mean the set
of assignments into M that satisfy the formula.

A (local) operation f on M maps sequences 〈Aα : α < β〉 of sets
Aα ⊆ Mnα to sets f (〈Aα : α < β〉) ⊆ Mn.

Such a local operation is a logical operation if it is closed under
permutations of M.



Introduction Spectra Logicality Symbiosis Games

Logicality

This is related to the issue of the logicality of a model class as we
say that the operation corresponding to the model class is logical
to the degree that the model class is definable in a nice logic, i.e. a
logic that is close to being first order with respect to its model
theoretic properties.13

Permutation invariance on its own is a questionable guarantor of
logicality, due to overgeneration. E.g. the cardinality of the
underlying domain is classified as logical under the criterion.

13This was the position taken in “Logicality and model classes,”
[Kennedy and Väänänen, 2021].
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So far we have said. . .

The model class K is trivially definable in the extension FO(QK) of
first order logic by the quantifier QK by the sentence QKxyR(x , y).

Conversely, every class of models definable in FO(QK), or indeed in
any abstract logic, is a model class i.e. is closed under
isomorphisms.
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An easy theorem

Theorem
If K is a class of models of the same vocabulary, then the following
conditions are equivalent:

1. K is closed under isomorphisms, i.e. K is a model class.

2. K is definable in some extension of first order logic by a
generalized quantifier.

3. K is definable in some logic.
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Corollary

An operation is a logical operation (i.e. can be identified with a
model class via a generalized quantifier) if and only if it can be
expressed in some logic, i.e. if and only if the associated model
class is definable in some logic.
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A theorem of V. McGee improves “some logic” to a very specific
logic, namely L∞∞, but at a price: we obtain a different definition
for each cardinality separately.14

14[McGee, 1996]
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In order to state McGee’s theorem we identify the property of
cardinality dependence. For any cardinal λ let Kλ be the class of
elements of the model class K with a domain of size λ.

Definition
A model class K is cardinal dependently definable, or CD-definable,
in a logic L∗, or cardinal dependently L∗-definable, if Kλ is
L∗-definable for every λ.
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Cardinality Dependence

Note that a model class can be CD-definable even in first order
logic without being definable in L∞∞: Consider the class Klim of
models (M,P), where either |M| is a limit cardinal and P = ∅ or
else |M| is a successor cardinal and P 6= ∅. We have now defined
the class Klim in a first order way in every cardinality, i.e. this class
is CD-definable in first order logic.

But it is a consequence of the Löwenheim-Skolem Theorem15 of
L∞∞ that this model class cannot be definable in it. (Suppose the

class is definable by φ in Lκ+κ+ . We can use the Löwenheim-Skolem Theorem to

move from a model of φ ∧ ∃xP(x) of successor cardinality to a submodel of limit

cardinality (or vice versa) and thereby violate the definition of Klim.)

15If a sentence of Lκ+κ+ has a model ≥ µκ for some µ, it has a model of size
µκ.
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McGee’s theorem

Theorem ([McGee, 1996])

If K is a class of models of the same vocabulary, then the following
conditions are equivalent:

1. K is closed under isomorphisms.

2. K is CD-definable in L∞∞.
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A “generalization” of DNF

Proof sketch.
Let us fix an infinite cardinal λ. Let Mα, α < 2λ, be an
enumeration of all elements of K with domain λ. Let θα ∈ Lλ+λ+

characterize up to isomorphism the model Mα.16 The sentence∨
α<2λ θα defines the model class Kλ.

16θα is essentially the diagram of Mα.
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• The fact that McGee’s theorem depends on the cardinality of
the models in the class means that the sentence of φλ of
L∞∞ defining the model class Kλ may very well depend on λ,
as in the example Klim.

• When we ask whether the property of a model of belonging to
the model class Klim is logical or not, we essentially ask
whether the property of a model (or more precisely |M|) of
having a limit cardinality is logical or not.

• According to the Tarski-Sher criterion of permutation
invariance17 it is logical. On the other hand, it is fair to say
that it is a mathematical property rather than a logical one.

• From the point of view of “Logicality and Model Classes” the
logicality of membership in Klim manifests in a rather low
degree of logicality.

17The criterion classifies a notion as logical if it is invariant under all
permutations of the relevant domain. See Tarski’s “What is a logical
constant?” See also [Sher, 2008].
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First-orderism

• This leads us to ask whether L∞∞ can be replaced by a
“tamer” logic, one closer to being first order in its
model-theoretic properties?

• If such were to exist, then even with the problem of
dependence on the cardinality of the models in the class
unsolved, the relevant logicality claim would be strengthened
by virtue of its proximity to first order logic.

• In fact L∞∞ can be replaced by a logic which is absolute and
which has a strong Löwenheim-Skolem theorem, together with
other desirable properties, though it is still the case that the
definition is given relative to the size of the models in the
class.
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Theorem
If K is a class of models of the same vocabulary, then the following
conditions are equivalent:

1. K is closed under isomorphisms.

2. K is CD-definable in ∆(L∞ω).1819

The ∆-operation preserves properties like compactness,
axiomatizability, Hanf and Löwenheim numbers. The ∆-operation
“fills the gaps” left by explicit definability in the sense that if a
model class is implicitly definable in the logic then it is explicitly
definable in the ∆-extension. Essentially, when we consider ∆(L)
rather than the logic L itself, we focus on what the logic becomes
when some accidental weaknesses are removed.

18See [Kennedy and Väänänen, 2021]. Theorem is due to Väänänen.
19A model class is said to be ∆-definable in a logic L if it is the class of

reducts of models of a sentence of L, and also its complement is.
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Back to having syntax

To say that a model class behaves as if it had a syntax, is to cash
out “behavior” in terms of consequences:

• It has a nice spectrum.

• It has Löwenheim-Skolem type properties of some sort, e.g.
holds for all Lκλ and all L(Qα).

• It has completeness theorems of some sort, e.g. holds for
Lω1ω, L(Q1), L(aa), and in a generalized sense for Lκλ L(Qα)
and even second order logic L2 (by modifying the semantics).
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Having a logic

Having Löwenheim-Skolem type properties of some sort, e.g.
holding for all Lκλ and all L(Qα), is a marker of logicality, for here
we obtain indifference to cardinality.
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More consequences of having a syntax

• It has compactness theorems of some sort. (Usually follows
from completeness.)

• Proof theory of some sort. (Part of the proof of
completeness.)

• Model theory of some sort. (Using compactness.)

• Set theoretical absoluteness of some sort. (As in first order
logic, L∞ω).
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The trivial syntax gives none of these.

It is difficult to define a notion of syntax that would cover all the
relevant cases but exclude the trivial solutions.
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What we can infer if K has “strong” Löwenheim-Skolem
properties

A candidate for a strong Löwenheim-Skolem property:

Definition ([Lindström, 1966])

We say that a model class K is reducible if for all A the following
hold:

1. A ∈ K ⇒ there is a club of countable subsets B ⊆ A such
that B ∈ K, where B is A � B.

2. A /∈ K ⇒ there is a club of countable B ⊆ A such that
B /∈ K.
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Lindström proved that if K is reducible, then every model class
definable in L(QK) is reducible. This means that K is then
definable in a logic L∗ (namely L(QK)) with the property that for
every φ ∈ L∗:

A |= φ ⇐⇒ there is a club of countable subsets B ⊆ A such that
B |= φ.

(Proof by induction on the complexity of φ.)



Introduction Spectra Logicality Symbiosis Games

This means that if φ ∈ L∗ has a model, it has a countable
submodel, and there are enough countable submodels to form a
club.

Some reducible logics: FO, Lω1,ω, L(Q0), any absolute logic.

Replacing ℵ0 by any regular κ we have the same for submodels of
size κ for L(Qα+1) (ℵα = κ), Lκ+ω.
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• Knowledge about the reducibility of K helps us to find a
reducible logic in which it is definable, namely L(QK).

• This logic does not have a particularly informative syntax but
reducibility in itself is an indication of possible definability in a
nice syntax.
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Improving Lindström’s theorem

• Define
M |= aa s φ

⇐⇒ there is a club of countable s such that M |= φ(s).

• aa is the almost all quantifier.

• L(aa) is stationary logic. It is axiomatizable (Shelah, Barwise,
Makkai, Kaufmann) and countably compact.

Theorem
If the model class K is reducible, it is definable in L(2ω)+ω(aa).

This is better than Lindström’s result for arbitrary K, because
L(2ω)+ω(aa) has a more informative syntax.
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DNF again

Proof.
If N is a countable model of the vocabulary of K, let θN ∈ Lω1ω

characterize it up to isomorphism (proved by Scott, assuming a

countable vocabulary). For s a unary predicate, set θ
(s)
N be the

relativization of θN to the predicate s. Let φ be the sentence

aa s
∨
{θ(s)
N : N ⊆ ω,N ∈ K}.

Now φ defines K.20

20If M∈ K, there is a club of countable N ⊆M such that N ∈ K. Hence
M |= φ. If M /∈ K, then there is a club E of countable N ⊆M such that
N /∈ K. If M |= φ, there is a club E ′ of countable s ⊆ M for which M ∩ s

satisfies
∨
{θ(s)
N : N ⊆ ω,N ∈ K}. Let N ⊆M such that N ∈ E ∩ E ′. There is

N ′ ∈ K such that N ′ ∼= N . Hence N ∈ K, a contradiction with N ∈ E .
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Part 3: ZFC as syntax

One may always view model classes as set-theoretic objects:

A ∈ K ⇐⇒ Ψ(A, a), for Ψ a first order formula in the language
of set theory and a is a parameter.

Note that if K = Mod(φ) for φ in some logic L∗, then

A ∈ K ⇐⇒ A |=L∗ φ,

so here Ψ(x , y) is the formula x |=L∗ y and the parameter a is φ.
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Internal vs external definability, i.e. is Ψ a syntax of K?

Is this “external” set-theoretic definability a syntax of K? Does it
help us to find such? Note that set-theoretic definability adds ∈ to
the vocabulary of L∗. So, overkill.

Symbiosis21 relates what happens inside a model to how the model
sits in the set-theoretic universe V .

21[Väänänen, 1979]
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“Inside” vs “Outside”

If in K we actually have φ in a logic L∗ defining the class, then we
have

A ∈ K ⇐⇒ A |= φ ⇐⇒ Ψ(A, a).

φ looks at A from the inside,

Ψ looks at A from the outside.
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• Symbiosis was invented in order to explain the
non-absoluteness of second order logic; to answer the
question, what keeps second order logic from being absolute?

• An exact answer: the nonabsoluteness of the relation R(x , y)
for “x is the power set of y” is the reason why second order
logic is non-absolute.

• Once we adopt R-absoluteness, that is to say once we hold
the power set operation fixed, second order logic becomes
absolute.22

• On the other hand, second order logic “sees” the predicate R
and can talk about it and everything else that is R-absolute,
via its definable model classes.23

22The absoluteness of second order logic means here that the satisfaction
relation is absolute for transitive models of set theory when the power-set
operation R is respected (i.e. absolute). Of course SOL is otherwise famously
nonabsolute.

23The model class KR “associated with R” is ∆-definable in L2 (generalized
definable).
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In other words, the power set operation is symbiotic with second
order logic. (As one would expect.)
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A model class has the “inside” definability property of the left
column if and only if it has the “outside” definability property of
the right column. The properties on the right can be viewed as
degree of absoluteness. (The traditional absoluteness in set theory
is the same as ∆1-definability.)

Inside Outside

Sort logic24 First order logic

Second order logic ∆1(P) in the Levy-hierarchy

First order logic with ∆1(Cd) in the Levy-hierarchy
the Härtig-quantifier

Infinitary logic LHYP ∆KP
1 in the Levy-hierarchy

First order logic ∆KPU−
1 in the Levy-hierarchy

M |= φ ⇐⇒ Φ(M)
24In Sort Logic one is allowed to “guess” predicates outside the domain of

the model.
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The complexity of the set-theoretical definition Ψ is an indicator of
the difficulty of finding a syntax for the model class.
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Sort Logic: “guessing” predicates outside the domain of
the model.
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Definition
A logic L is symbiotic with a predicate P of set theory if:
On the one hand:

• The predicate “φ ∈ L” is Σ1(P). (generalized r.e.)

• The predicate “M |=L φ” is ∆1(P). (generalized rec.)

• A certain canonical model class KP associated with P is
definable in the ∆-extension of the logic L.25

25A model class is said to be definable in the ∆-extension of a logic L if it is
the class of reducts of models of a sentence of L, and also its complement is.
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Generic absoluteness

Note that second order logic over the natural numbers, i.e. over
the model (ω,+,×), is absolute under (set) forcing if we assume a
proper class of Woodin cardinals.
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Part 4: Games!

We raised the possibility of extracting information about the
definability of a model class from raw semantic data, e.g. the
spectrum of the class.

Let’s consider another type of data, namely a game.
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If a logic L is given, we can define the following equivalence
relation:

A ≡L B ⇐⇒ ∀φ ∈ L(A |= φ↔ B |= φ).

Now assume we are given an arbitrary equivalence relation ≡∗ on
structures, closed under isomorphism.

Question: Does ≡∗ arise from a logic?

I.e. is there are logic L∗ such that ≡∗ is the same as ≡L∗?
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Another trivial solution

Let S be the collection of all ≡∗-classes. Consider L∗ = 〈S ,T 〉,
where

T (A, φ) ⇐⇒ A ∈ φ, for φ ∈ S .

Note that here φ is an ≡∗-class [A0] of L∗-structures, so really we
have

T (A, φ) ⇐⇒ A ≡∗ A0.
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• The problem is that a priori S (i.e. the ≡∗-classes) is a proper
class, while in the Lindström definition, S must be a set.

• But if ≡∗ satisfies a kind of Löwenheim-Skolem Theorem,
namely there is κ such that for all A there is B of size ≤ κ in
the ≡∗-class of A, then it is enough to take S to be the (now)
set of [A] with universe ⊆ κ.

• Now |S | ≤ 2κ .

• Thus the Löwenheim-Skolem Theorem helps us to find a
reasonable logic L∗ such that ≡∗ is the same as ≡L∗ . (Proof
easy.)
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Tools from the finite realm
Two finite graphs G and H are isomorphic iff for every finite graph
F , we have |hom(F ,G )| = |hom(F ,H)|. (Note that |hom(F ,G )|,
|hom(F ,H)| are finite). (L. Lovasz.)

Call the “left profile of G” the infinite vector consisting of all
homomorphism counts |hom(F ,G )|, as F varies over all finite
graphs.

Restrict F to a class C of graphs and consider the following
equivalence relation: two graphs G and H are equivalent if and
only if they have the same left profile restricted to C .

Dvǒrák showed that if C is the class of all graphs of treewidth at
most k , then the associated equivalence relation is elementary
equivalence in (k−1)-variable FO-logic with counting quantifiers.26

26“On Recognizing Graphs by Numbers of Homomorphisms,” Wiley 2009.
See also “On the Expressive Power of Homomorphism Counts”, Atserias,
Kolaitis, Wei-Lin Wu.
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Shelah’s L1
κ

• Shelah’s logic L1
κ ([Shelah, 2012]) has interpolation27 and

satisfies a kind of Löwenheim-Skolem theorem.

• L1
κ is the only strong logic with interpolation besides Lω1ω.

Moreover, it’s maximal w.r.t. the Löwenheim-Skolem theorem
and an undefinability of well-order condition (a weak form of
compactness).

• Cf. Lindström’s Theorem, a semantic characterization of first
order logic, i.e. another way of reading syntax off semantics.

• The “logic” has no syntax but it has a criterion of elementary
equivalence given by a game,28 whence it is a logic according
to Shelah.

27i.e. disjoint model classes, definable with extra predicates, can be
separated by a definable model class

28I.e. if player 2 has a winning strategy in the game then the structures are
equivalent according to the eq. rel. of the game.
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Knots in natural language

• Is L1
κ a logic? Does L1

κ have a reasonable syntax?

• M. Džamonja, Siiri Kivimäki, B. Veličković, A. Villaveces, and
J. Väänänen are developing various ways toward finding a
syntax.

• The game paradigm in logic is fundamental:

• The Ehrenfeucht-Fräıssé game providing a criterion for
elementary equivalence.

• The semantic game giving a criterion for truth in a model.
• The model existence game which gives a criterion for

consistency.
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In sum

In my monograph [Kennedy, 2020] I examined the semantic point
of view, and attempted to say something exact about the
entanglement of semantically presented canonical (mathematical)
structures with canonical formal languages. This material is a
continuation of that work, but now starting simply with raw
semantic data and no syntax.
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Thank you!
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