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Godel

Lo =10

L.+1 = Def(L,)

L, = U.,-, L. forlimitv
L = UL
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Jensen

= 0
= rud(J, U {J,})

= Uaep dua for limit v
= Ua onz

HOD;
000000
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Suppose L* is a logic

Ly = 0
L. = Defx(L,)
L, = U<, L, for limit v

(L) = UL
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A typical setin L, , has the form
X={ael,: (L, €k pab)

where o(x,y) € £L*and b € L.
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Theorem
For any L* the class C(L*) is a transitive model of ZF
containing all the ordinals.

APsricn)(t)h]; usual proof oiZF in L. Let us prove the Comprehension Schema as an
example. Suppose A, b are in C(L*), »(x, ¥) is a first order formula of set theory and
X={acA:C(L*) E o(a b)}.
Let o be an ordinal such that A € L], and ¢(x, y) is absolute for L,,, C(L*). Now
X={aell L, =acAnrq(ab)}

Hence X € C(L*). O
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Definition
A logic L£* is adequate to truth in itself if for all finite
vocabularies K there is function ¢ — "¢ from all formulas
o(X1,...,Xn) € L*in the vocabulary K into w, and a formula
Satr«(x,y, z) in £* such that:

1. The function ¢ — "¢ is one to one and has a recursive

range.
2. For all admissible sets M, formulas ¢ of £* in the

vocabulary K, structures N' € M in the vocabulary K, and
ai,...,an € N the following conditions are equivalent:

21 M Satq- (N, (ay, ..., an))
22 N Ey(ay,...,an).

We may admit ordinal parameters in this definition.
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Lemma
If £* is adequate to truth in itself, there are formulas .~ (x) and
V- (x,y) of L* in the vocabulary {c} such that if M is an
admissible set and . = M N On, then:
1. {aeM:(M,e) = dg(a)} =L, NM.
2. {(a,b) e M x M : (M, ) =V, -(a,b)} is a well-order </,
the field of which is L, N M.
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Some history

e Chang in Mostowski’s seminar in Warsaw 1967: £* = L.
e Chang, PSPM 1971: £* = L.

e Myhill-Scott, PSPM 1971: £* = L2.

e Gloede, “Higher Set Theory" 1977: £* = L,

¢ Kennedy-Magidor-V, JML 2021: £* = L(Q)

e Welch, JSL 2022: £* = L(])

¢ Friedman-Gitman-Muller, APAL 2023.

e UrYa'ar, APAL 2024: £* = L(Q',..., Q")

e SQuaRE group in the AIM 2021-2024.
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Higher order logics
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L(H)

LQ™)

Countably compact
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Possible attributes of inner models

e Forcing absolute.
e Support large cardinals.
e Satisfy Axiom of Choice.
e Arise “naturally".

¢ Decide questions such as CH.
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L: Forcing-absolute but no large cardinals (above WC)

HOD: Has large cardinals but forcing-fragile

¢ [(R): Forcing-absolute, has large cardinals, but no AC

Extender models: Tailor made to support given large
cardinals

14/52



Introduction The cof-model

The aa-model HOD
00000000000000800 00000000000000000000

000000000 000000

Theorem (Essentially Gloede 1978)

Suppose L* (and its syntax) are ZFC-absolute with parameters
from L. Then C(L*) = L.

Corollary
C(L(Qy)) = L forall a.
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Definition
Magidor-Malitz quantifier of dimension n:

ME Q™ Xy, .o, Xno(X1, oy Xn) =

IX C M(|X| >R, AVay,...,an e X: M E ¢(ay,...,an)).

Can express Souslinity of a tree.
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Consistently, C(Q}"?) # L, but:

Theorem
If 0% exists, then C(QY" <) = L.

Lemma

Suppose 0% exists and A c L, A C [a)?. If there is (in V) an
uncountable B such that [B]2 C A, then there is such a set B in
L.
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The inner model C*.
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Definition
The cofinality quantifier Q' is defined as follows:

M ): Q;nyQO(X?yv é) — {(C’ d) : M |: QO(C) d, é)}

is a linear order of cofinality w.

e Axiomatizable
e Fully compact

e Downward Léwenheim-Skolem down to Ry
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Definition

C* =qer C(Q)

Note:
{a < B:cfV(a)=w} e C*
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Theorem
If 0 exists, then Of € C*.

Proof.
Let

X ={¢ <N, :¢isaregular cardinal in L and cf(¢) > w}
Now X € C* and

0F = {"p(X1, ..., Xa) 7 : Ln, = ©(71, ..., yn) fOr some v4 < ... < v, in X}.

O

Welch JSL 2022 proves the stronger result 0X ¢ C*, where 0¥
is a sharp for a proper class of measurable cardinals.
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e More generally, x* € C*for any x € C* such that x* exists.

* Hence C* # L(x) whenever x is a set of ordinals such that
x* exists in V.
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Theorem
The Dodd-Jensen Core model is contained in C*.

Theorem
Suppose L* exists. Then C* contains some L”.

23/52



roduction The cof-model The aa-model HOD
00000000000000000 000000@0000000000000 000000000

Theorem
If there is a measurable cardinal k, then V # C*.

Proof.

Suppose V = C* but « is a measurable cardinal. Let i : V — M with critical point «
and M* C M. Now (C*)M = (C*)V = V, whence M = V. This contradicts Kunen’s
result that there cannot be a non-trivial i : V — V. a

24/52



The cof-model
0000000 e000000000000

Theorem
If E is an infinite set of measurable cardinals (in V), then
E ¢ C*. Moreover, then C* # HOD.

Proof.
As Kunen’s result that if there are uncountably many
measurable cardinals, then AC is false in the Chang model. [

25/52



The cof-model
000000008000 00000000

Stationary Tower Forcing

Suppose )\ is Woodin.
e There is a forcing Q such that in V[G] thereisj: V - M
with V[G] E M*¥ C M and j(w1) = .

e Forall regular wy < k < A there is a cofinality w preserving
forcing P such that in V[G] thereis j: V — M with
VIG] = M¥ C Mand j(k) =\
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Theorem
If there is a Woodin cardinal, then w4 is (strongly) Mahlo in C*.

Proof.

To prove that w4 is strongly inaccessible in C* suppose o« < Ry and f : wq — (2% is one-one. Let Q, G and
j:V — Mwith M* C Mand j(wy) = X (= Woodin) be as above. Thus j(f) : A — ((ZQ)C*)M. Let

a= j(f)(wY). If a € V, then j(a) = a, whence a = f(§) for some § < wq. Then a = j(a) = j(f)(j(5)) = j(f)()
contradicting the fact that a = j(f)(wq). Hence a ¢ V.

Now, (C*)M = C%, C V.Hence a € C%, C V, a contradiction.

)¢”
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Theorem
Suppose there is a Woodin cardinal . Then every regular
cardinal k such thatwy < k < X is weakly compact in C*.

Proof.

Suppose )\ is a Woodin cardinal, x > w4 is regular and < \. To
prove that « is strongly inaccessible in C* we can use the
“second" stationary tower forcing P above. With this forcing,
cofinality w is not changed, whence (C*)M = C*. O
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Theorem
If there is a proper class of Woodin cardinals, then the regular
cardinals > N, are indiscernible in C*.

Proof.

We use the “second" stationary tower forcing P to show first
that the Woodin cardinals are indiscernible, and after that the
regular cardinals > X, are indiscernible. Remember that here P
and j preserve C*. O
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Theorem
If V = L*, then C* is the inner model M .[E], where
E ={kyn:n<w}.
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Theorem

Suppose there is a proper class of Woodin cardinals. Suppose
P is a forcing notion and G C P is generic. Then

Th((C")") = Th((C*)"19).

Moreover, the theory Th(C*) is independent of the cofinality
used, and forcing does not change the reals of these models.
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Proof.
Let H; be generic for Q. Now

ji: (€)Y = (€M = (C)"M = (cxy)".
Let H> be generic for Q over V[G]. Then
fo : (CHVIE = (C)™e = (C7) TP = (C2)VI¥ = (C2,)Y.

O
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Theorem
|P(w) N C*| < Ny.
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Theorem

If there are three Woodin cardinals and a measurable cardinal
above them, then there is a cone of reals x such that C*(x)
satisfies the Continuum Hypothesis.
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If two reals x and y are Turing-equivalent, then C*(x) = C*(y).
Hence the set
{y Cw:Cy) = CH} (1)
is closed under Turing-equivalence. Need to show that
() The set (1) is projective.
(Il) For every real x there is a real y such that x <t yand y is
in the set (1).
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Lemma
Suppose there is a Woodin cardinal and a measurable cardinal
above it. The following conditions are equivalent:

(i) C*(y) E CH.

(i) There is a countable iterable structure M with a
Woodin cardinal such thaty € M,
M & a(“L.(y) = CH") and for all countable
iterable structures N with a Woodin cardinal such
thaty € N: P(w)(€)" C P(w)C)".
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Consistency results about C*

Suppose V = L. Let us add a Cohen real r. We can code this real
with a modified Namba forcing so that in the end for all n < w:
/(R ,)=w < ner.

Theorem

Suppose V = L and « is a cardinal of cofinality > w. There is a
forcing notion P which forces C* = 2* = x and preserves
cardinals between L and C*.

Theorem
It is consistent, relative to the consistency of an inaccessible
cardinal, that V = C* and 2% = .
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The inner model C(aa).

38/52



The aa-model
0e0000000

Definition

M = aasp(s) <= {Ac [M]=* : (M,A) | o(s)} contains a
club of countable subsets of M. (i.e. almost all countable
subsets A of M satisfy ©(A).) We denote —aas—¢ by stat sep.

C(aa) =g C(L(a2))

C* C C(aa)
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Suppose L* is a logic the sentences of which are (coded by)
natural numbers. We define the hierarchy (J.,), a € Lim as
follows:

Tr = {(a, p(@)) : (L., €, Trla) = (@), o(X) € £*,a € J., a € Lim},

where
Trla = {(B,¥(&)) € Tr: € aNLim},
and
J =0
i = rudp(J,U{J})

J,, = UgepJoa, forveLim.
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Definition
1. A first order structure M is club-determined if

-, —,

M = V8VX[aate(X, 5, 1) V aat—¢(X, §, 1)],

where (%, 8, 1) is any formula in £(aa).

2. We say that the inner model C(aa) is club-determined if
every level L, is.
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Theorem
If there are a proper class of Woodin cardinals or PFA holds,
then C(aa) is club-determined.

Proof.
Suppose L/, is the least counter-example. W.l.o.g « < wz‘/. Letd
be Woodin. The hierarchies

C(aa)Mv C(aa) V[G]) C(aa<(5) v

are all the same and the (potential) failure of

club-determinateness occurs in all at the same level. ]
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Some ingredients

Lemma
If 6 is Woodin, S C ¢ is in M and M thinks that S is stationary,
then V[G] thinks that S is stationary.

Lemma
Suppose C(aa) is club-determined, ¢ is Woodin, P is the
countable stationary tower, G C P is generic and M is the

associated generic ultrapower. Then C(aa)V = C(aas).
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Theorem
Suppose there are a proper class of Woodin cardinals. Then
the theory of C(aa) is (set) forcing absolute.

Proof.

Suppose P is a forcing notion and § is a Woodin cardinal > |P|.

Letj: V — M be the associated elementary embedding. Now
C(aa) = (C(aa))M = (C(aa-s))".

On the other hand, let H C P be generic over V. Then § is still
Woodin, so we have the associated elementary embedding
J/: V[H] — M'. Again

(C(aa))'!M = (C(aa))™ = (C(aa<s)) M.

Finally, we may observe that (C(aa;))"I"! = (C(aa-;)).
Hence
(C(aa)) "1 = (C(aa))".
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Theorem
Suppose there are a proper class of Woodin cardinals or PFA
holds. Then every regular k. > X4 is measurable in C(aa).

Proof.

For o big enough for L/ to contain all subsets of « in C(aa), consider the normal filter:
’ ’

F={XCr:Xel,,L, [ aas(sup(sn k) € X)}.
Suppose X C « is in C(aa). Since L; is club determined,

L!, = aas(sup(s N k) € X) or

L!, = aas(sup(s N k) & X).

In the first case X € F. Inthe second case  \ X € F. O

Theorem
Suppose there is a supercompact cardinal. Then every regular
k > Ny is measurable in C(aa).
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Theorem
If Club Determinacy holds, then C(aa) satisfies CH.

The proof is based on the concept of an aa-premouse.
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The inner model HOD;.
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Recall:
HOD = C(L?).
Let
HOD¢ =4 C(Z1).
Note:

e {a < f:cfY(a) = w} € HODy

e {(o,8) €7%:]al” <|B]"} € HOD;

¢ {a < f:acardinalin V} € HOD4

* {(a0,a1) € B2 : |ag|” < (21*11)V} € HOD;
e {a < B: (2 = (ja]*)V} € HOD;
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Lemma
1. C* C HODjq.

2. C(Q"™=*) C HODy
3. C(I) C HOD;.
4. If 0% exists, then 0f € HOD
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Theorem

It is consistent, relative to the consistency of infinitely many
weakly compact cardinals that for some \:

{k < X\: k weakly compact (in V)} ¢ HODy,

and, moreover, HOD{ = L #+ HOD.
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Further work

e Further work has focused on closer investigation of the
relationship between C* and C(aa), on inner models of
C(aa) with large cardinals, on GCH in these inner models,
and on further extensions of C(aa).

e Goldberg, Kennedy, Larson, Magidor, Rajala, Schindler,
Steel, Vadananen, Welch, Wilson, Ya'ar.

¢ The reals of C(aa) are in M; (Magidor-Schindler).

51/52



Introduction The cof-model The aa-model HOD4
000000000000 00000 0000000000 0000000000 000000000 00000e

Thank you!
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