The aa-mode

Inner models from extended logics

Joint work with Juliette Kennedy and Menachem Magidor

Department of Mathematics and Statistics, University of Helsinki

ILLC, University of Amsterdam

Gdańsk, December 2023

 The cof-model

The aa-mode

HOD₁ 000000

$$L_{0} = \emptyset$$

$$L_{\alpha+1} = \text{Def}(L_{\alpha})$$

$$L_{\nu} = \bigcup_{\alpha < \nu} L_{\alpha} \text{ for limit } \nu$$

$$L = \bigcup_{\alpha} L_{\alpha}$$

<ロ><□><一</p>

The cof-model

The aa-mode

HOD₁ 000000

Jensen

$$J_0 = \emptyset$$

$$J_{\alpha+\omega} = \operatorname{rud}(J_{\alpha} \cup \{J_{\alpha}\})$$

$$J_{\omega\nu} = \bigcup_{\alpha < \nu} J_{\omega\alpha} \text{ for limit } \nu$$

$$L = \bigcup_{\alpha} J_{\omega\alpha}$$

he cof-model

The aa-model

HOD₁ 000000

Suppose \mathcal{L}^* is a logic

$$L'_{0} = \emptyset$$

$$L'_{\alpha+1} = \text{Def}_{\mathcal{L}^{*}}(L'_{\alpha})$$

$$L'_{\nu} = \bigcup_{\alpha < \nu} L'_{\alpha} \text{ for limit } \nu$$

$$C(\mathcal{L}^{*}) = \bigcup_{\alpha} L'_{\alpha}$$

・ロト (部)、(音)、(音)、音)の(で 4/52

The aa-model

HOD₁ 000000

A typical set in $L'_{\alpha+1}$ has the form

$$X = \{ a \in L'_{\alpha} : (L'_{\alpha}, \in) \models \varphi(a, \vec{b}) \},\$$

where $\varphi(\mathbf{x}, \mathbf{y}) \in \mathcal{L}^*$ and $\mathbf{b} \in \mathbf{L}'_{\alpha}$.

The aa-mode

Theorem

For any \mathcal{L}^* the class $C(\mathcal{L}^*)$ is a transitive model of ZF containing all the ordinals.

Proof.

As in the usual proof of ZF in *L*. Let us prove the Comprehension Schema as an example. Suppose A, \vec{b} are in $C(\mathcal{L}^*), \varphi(x, \vec{y})$ is a first order formula of set theory and

$$X = \{ a \in A : C(\mathcal{L}^*) \models \varphi(a, \vec{b}) \}.$$

Let α be an ordinal such that $A \in L'_{\alpha}$ and $\varphi(x, y)$ is absolute for $L'_{\alpha}, C(\mathcal{L}^*)$. Now

$$X = \{ a \in L'_{\alpha} : L'_{\alpha} \models a \in A \land \varphi(a, \vec{b}) \}.$$

Hence $X \in C(\mathcal{L}^*)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The aa-mode

HOD₁ 000000

Definition

A logic \mathcal{L}^* is *adequate to truth in itself* if for all finite vocabularies *K* there is function $\varphi \mapsto \ulcorner \varphi \urcorner$ from all formulas $\varphi(x_1, \ldots, x_n) \in \mathcal{L}^*$ in the vocabulary *K* into ω , and a formula $\operatorname{Sat}_{\mathcal{L}^*}(x, y, z)$ in \mathcal{L}^* such that:

- 1. The function $\varphi \mapsto \ulcorner \varphi \urcorner$ is one to one and has a recursive range.
- For all admissible sets *M*, formulas φ of L* in the vocabulary *K*, structures N ∈ M in the vocabulary *K*, and a₁,..., a_n ∈ N the following conditions are equivalent:
 2.1 M ⊨ Sat_{L*}(N, ¬φ¬, ⟨a₁,..., a_n⟩)
 2.2 N ⊨ φ(a₁,..., a_n).

We may admit ordinal parameters in this definition.

The aa-model

Lemma

If \mathcal{L}^* is adequate to truth in itself, there are formulas $\Phi_{\mathcal{L}^*}(x)$ and $\Psi_{\mathcal{L}^*}(x, y)$ of \mathcal{L}^* in the vocabulary $\{\in\}$ such that if M is an admissible set and $\alpha = M \cap \text{On}$, then:

- 1. $\{a \in M : (M, \in) \models \Phi_{\mathcal{L}^*}(a)\} = L'_{\alpha} \cap M.$
- 2. { $(a,b) \in M \times M : (M, \in) \models \Psi_{\mathcal{L}^*}(a,b)$ } is a well-order $<'_{\alpha}$ the field of which is $L'_{\alpha} \cap M$.

he cof-model

The aa-mode

HOD₁ 000000

Some history

- Chang in Mostowski's seminar in Warsaw 1967: $\mathcal{L}^* = L_{\kappa\kappa}$.
- Chang, PSPM 1971: $\mathcal{L}^* = L_{\kappa\kappa}$.
- Myhill-Scott, PSPM 1971: $\mathcal{L}^* = L^2$.
- Gloede, "Higher Set Theory" 1977: $\mathcal{L}^* = \mathcal{L}_{\kappa\lambda}$
- Kennedy-Magidor-V, JML 2021: $\mathcal{L}^* = L(Q)$
- Welch, JSL 2022: $\mathcal{L}^* = L(I)$
- Friedman-Gitman-Müller, APAL 2023.
- Ur Ya'ar, APAL 2024: $\mathcal{L}^* = L(Q^1, ..., Q^n)$
- SQuaRE group in the AIM 2021-2024.

The aa-model

HOD₁ 000000

he cof-model

The aa-model

The cof-model

The aa-model

イロト 不得 とくき とくき とうき

HOD₁ 000000

12/52

- $\mathcal{C}(\mathcal{L}_{\omega\omega}) = L$
- $\mathcal{C}(\mathcal{L}_{\omega_1\omega})=\mathcal{L}(\mathbb{R})$
- $C(\mathcal{L}_{\omega_1\omega_1}) = \text{Chang model}$
- $C(\mathcal{L}^2) = \mathrm{HOD}$

The aa-model

HOD₁ 000000

Possible attributes of inner models

- Forcing absolute.
- Support large cardinals.
- Satisfy Axiom of Choice.
- Arise "naturally".
- Decide questions such as CH.

The aa-mode

- L: Forcing-absolute but no large cardinals (above WC)
- HOD: Has large cardinals but forcing-fragile
- $L(\mathbb{R})$: Forcing-absolute, has large cardinals, but no AC
- Extender models: Tailor made to support given large cardinals

The aa-model

Theorem (Essentially Gloede 1978)

Suppose \mathcal{L}^* (and its syntax) are ZFC-absolute with parameters from L. Then $C(\mathcal{L}^*) = L$.

Corollary $C(\mathcal{L}(Q_{\alpha})) = L$ for all α .

The aa-model

HOD₁ 000000

Definition Magidor-Malitz quantifier of dimension *n*:

$$\mathcal{M} \models Q_{\alpha}^{\text{MM},n} x_1, ..., x_n \varphi(x_1, ..., x_n) \iff$$
$$\exists X \subseteq \mathcal{M}(|X| \ge \aleph_{\alpha} \land \forall a_1, ..., a_n \in X : \mathcal{M} \models \varphi(a_1, ..., a_n)).$$

Can express Souslinity of a tree.

The aa-model

HOD₁ 000000

Consistently, $C(Q_1^{MM,2}) \neq L$, but:

Theorem If 0^{\sharp} exists, then $C(Q_{\alpha}^{MM,<\omega}) = L$.

Lemma

Suppose 0^{\sharp} exists and $A \in L$, $A \subseteq [\alpha]^2$. If there is (in V) an uncountable B such that $[B]^2 \subseteq A$, then there is such a set B in L.

 The aa-model

HOD₁ 000000

The inner model C^* .

<ロ><□><□><□><□><□><□><□><□><□><□><□><□><0<○ 18/52

The cof-model

The aa-mode

HOD₁ 000000

Definition

The cofinality quantifier Q_{ω}^{cf} is defined as follows:

$$\mathcal{M} \models Q^{\mathrm{cf}}_{\omega} xy\varphi(x, y, \vec{a}) \iff \{(c, d) : \mathcal{M} \models \varphi(c, d, \vec{a})\}$$

is a linear order of cofinality ω .

- Axiomatizable
- Fully compact
- Downward Löwenheim-Skolem down to ℵ1

The cof-model

The aa-mode

HOD₁ 000000

Definition

$$\mathcal{C}^* =_{\mathit{def}} \mathcal{C}(\mathcal{Q}^{\mathrm{cf}}_\omega)$$

Note:

$$\{\alpha < \beta : \mathrm{cf}^{V}(\alpha) = \omega\} \in \mathcal{C}^{*}$$

The aa-model

HOD₁ 000000

Theorem If 0^{\sharp} exists, then $0^{\sharp} \in C^*$.

Proof. Let

 $X = \{\xi < leph_{\omega} : \xi ext{ is a regular cardinal in } L ext{ and } \mathrm{cf}(\xi) > \omega\}$

Now $X \in C^*$ and

 $\mathbf{0}^{\sharp} = \{ \ulcorner \varphi(x_1, ..., x_n) \urcorner : L_{\aleph_{\omega}} \models \varphi(\gamma_1, ..., \gamma_n) \text{ for some } \gamma_1 < ... < \gamma_n \text{ in } X \}.$

Welch JSL 2022 proves the stronger result $0^k \in C^*$, where 0^k is a sharp for a proper class of measurable cardinals.

- More generally, $x^{\sharp} \in C^*$ for any $x \in C^*$ such that x^{\sharp} exists.
- Hence $C^* \neq L(x)$ whenever x is a set of ordinals such that x^{\sharp} exists in V.

The aa-model

HOD₁ 000000

Theorem

The Dodd-Jensen Core model is contained in C^* .

Theorem

Suppose L^{μ} exists. Then C^* contains some L^{ν} .

The aa-model

HOD₁ 000000

Theorem

If there is a measurable cardinal κ , then $V \neq C^*$.

Proof.

Suppose $V = C^*$ but κ is a measurable cardinal. Let $i : V \to M$ with critical point κ and $M^{\kappa} \subseteq M$. Now $(C^*)^M = (C^*)^V = V$, whence M = V. This contradicts Kunen's result that there cannot be a non-trivial $i : V \to V$.

The aa-model

Theorem

If *E* is an infinite set of measurable cardinals (in V), then $E \notin C^*$. Moreover, then $C^* \neq HOD$.

Proof.

As Kunen's result that if there are uncountably many measurable cardinals, then AC is false in the Chang model.

The aa-model

HOD₁ 000000

Stationary Tower Forcing

Suppose λ is Woodin.

- There is a forcing \mathbb{Q} such that in V[G] there is $j: V \to M$ with $V[G] \models M^{\omega} \subseteq M$ and $j(\omega_1) = \lambda$.
- For all regular $\omega_1 < \kappa < \lambda$ there is a cofinality ω preserving forcing \mathbb{P} such that in V[G] there is $j : V \to M$ with $V[G] \models M^{\omega} \subseteq M$ and $j(\kappa) = \lambda$.

The aa-mode

Theorem

If there is a Woodin cardinal, then ω_1 is (strongly) Mahlo in C^* .

Proof.

To prove that ω_1 is strongly inaccessible in C^* suppose $\alpha < \aleph_1$ and $f : \omega_1 \to (2^{\alpha})^{C^*}$ is one-one. Let \mathbb{Q} , G and $j : V \to M$ with $M^{\omega} \subset M$ and $j(\omega_1) = \lambda$ (= Woodin) be as above. Thus $j(f) : \lambda \to ((2^{\alpha})^{C^*})^M$. Let $a = j(f)(\omega_1^V)$. If $a \in V$, then j(a) = a, whence $a = f(\delta)$ for some $\delta < \omega_1$. Then $a = j(a) = j(f)(j(\delta)) = j(f)(\delta)$ contradicting the fact that $a = j(f)(\omega_1)$. Hence $a \notin V$. Now, $(C^*)^M = C^*_{<\lambda} \subseteq V$. Hence $a \in C^*_{<\lambda} \subseteq V$, a contradiction.

The cof-model

The aa-model

Theorem

Suppose there is a Woodin cardinal λ . Then every regular cardinal κ such that $\omega_1 < \kappa < \lambda$ is weakly compact in C^* .

Proof.

Suppose λ is a Woodin cardinal, $\kappa > \omega_1$ is regular and $< \lambda$. To prove that κ is strongly inaccessible in C^* we can use the "second" stationary tower forcing \mathbb{P} above. With this forcing, cofinality ω is not changed, whence $(C^*)^M = C^*$.

The cof-model

The aa-model

Theorem

If there is a proper class of Woodin cardinals, then the regular cardinals $\geq \aleph_2$ are indiscernible in C^* .

Proof.

We use the "second" stationary tower forcing \mathbb{P} to show first that the Woodin cardinals are indiscernible, and after that the regular cardinals $\geq \aleph_2$ are indiscernible. Remember that here \mathbb{P} and *j* preserve C^* .

イロン イロン イヨン イヨン

э

30/52

Theorem If $V = L^{\mu}$, then C^* is the inner model $M_{\omega^2}[E]$, where $E = \{\kappa_{\omega \cdot n} : n < \omega\}.$

The cof-model

The aa-model

Theorem

Suppose there is a proper class of Woodin cardinals. Suppose \mathcal{P} is a forcing notion and $G \subseteq \mathcal{P}$ is generic. Then

$$Th((C^*)^V) = Th((C^*)^{V[G]}).$$

Moreover, the theory $Th(C^*)$ is independent of the cofinality used, and forcing does not change the reals of these models.

The cof-model

The aa-model

HOD₁ 000000

Proof. Let H_1 be generic for \mathbb{Q} . Now

$$j_1: (C^*)^V \to (C^*)^{M_1} = (C^*)^{V[H_1]} = (C^*_{<\lambda})^V.$$

Let H_2 be generic for \mathbb{Q} over V[G]. Then

$$j_2: ({\mathcal{C}}^*)^{V[G]} o ({\mathcal{C}}^*)^{M_2} = ({\mathcal{C}}^*)^{V[H_2]} = ({\mathcal{C}}^*_{<\lambda})^{V[G]} = ({\mathcal{C}}^*_{<\lambda})^V.$$

The cof-model

The aa-model

HOD₁ 000000

Theorem $|\mathcal{P}(\omega) \cap \mathcal{C}^*| \leq \aleph_2.$

<ロト<団ト<三ト<三ト<三ト<三ト 33/52

The aa-model

HOD₁ 000000

Theorem

If there are three Woodin cardinals and a measurable cardinal above them, then there is a cone of reals x such that $C^*(x)$ satisfies the Continuum Hypothesis.

The aa-mode

If two reals x and y are Turing-equivalent, then $C^*(x) = C^*(y)$. Hence the set

$$\{ y \subseteq \omega : C^*(y) \models CH \}$$
(1)

is closed under Turing-equivalence. Need to show that

(I) The set (1) is projective.

(II) For every real x there is a real y such that $x \leq_T y$ and y is in the set (1).

The cof-model

The aa-mode

HOD₁ 000000

Lemma

Suppose there is a Woodin cardinal and a measurable cardinal above it. The following conditions are equivalent:

(i) $C^*(y) \models CH$.

(ii) There is a countable iterable structure M with a Woodin cardinal such that y ∈ M,
 M ⊨ ∃α("L'_α(y) ⊨ CH") and for all countable iterable structures N with a Woodin cardinal such that y ∈ N: P(ω)^{(C*)^N} ⊆ P(ω)^{(C*)^M}.

Consistency results about C*

Suppose V = L. Let us add a Cohen real r. We can code this real with a modified Namba forcing so that in the end for all $n < \omega$: $cf^{V}(\aleph_{n+2}^{L}) = \omega \iff n \in r$.

Theorem

Suppose V = L and κ is a cardinal of cofinality $> \omega$. There is a forcing notion \mathbb{P} which forces $C^* \models 2^{\omega} = \kappa$ and preserves cardinals between L and C^* .

Theorem

It is consistent, relative to the consistency of an inaccessible cardinal, that $V = C^*$ and $2^{\aleph_0} = \aleph_2$.

The aa-model

HOD₁ 000000

The inner model C(aa).

<ロト<団ト<三ト<三ト<三ト<三ト 38/52

The cof-model

The aa-model

HOD₁ 000000

Definition

 $\mathcal{M} \models \operatorname{aa} s\varphi(s) \iff \{A \in [M]^{\leq \omega} : (\mathcal{M}, A) \models \varphi(s)\}$ contains a club of countable subsets of M. (i.e. almost all countable subsets A of M satisfy $\varphi(A)$.) We denote $\neg \operatorname{aa} s \neg \varphi$ by stat $s\varphi$.

$$C(aa) =_{def} C(\mathcal{L}(aa))$$

 $C^* \subseteq C(aa)$

<ロ>

<ロ>

<10>

<10>

<10>

<10>

<10>

<10>

<10>

<10</p>

<10</p>
<10</p>
<10</p>

<10</p>
<10</p>
<10</p>

<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>

<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>
<10</p>

The aa-model

Suppose \mathcal{L}^* is a logic the sentences of which are (coded by) natural numbers. We define the hierarchy (J'_{α}) , $\alpha \in \text{Lim}$ as follows:

$$\operatorname{Tr} = \{(\alpha, \varphi(\bar{\alpha})) : (J'_{\alpha}, \in, \operatorname{Tr} \upharpoonright \alpha) \models \varphi(\bar{\alpha}), \varphi(\bar{x}) \in \mathcal{L}^*, \bar{\alpha} \in J'_{\alpha}, \alpha \in \operatorname{Lim}\},\$$
where

$$\operatorname{Tr} \upharpoonright \alpha = \{ (\beta, \psi(\bar{\alpha})) \in \operatorname{Tr} : \beta \in \alpha \cap \operatorname{Lim} \},$$

and

$$\begin{array}{lll} J'_0 &=& \emptyset \\ J'_{\alpha+\omega} &=& \mathsf{rud}_{\mathrm{Tr}}(J'_{\alpha} \cup \{J'_{\alpha}\}) \\ J'_{\omega\nu} &=& \bigcup_{\alpha < \nu} J'_{\omega\alpha}, \text{ for } \nu \in \mathrm{Lim} \,. \end{array}$$

The aa-model

Definition

1. A first order structure \mathcal{M} is *club-determined* if

$$\mathcal{M} \models \forall \vec{s} \forall \vec{x} [aa \vec{t} \varphi(\vec{x}, \vec{s}, \vec{t}) \lor aa \vec{t} \neg \varphi(\vec{x}, \vec{s}, \vec{t})],$$

where $\varphi(\vec{x}, \vec{s}, \vec{t})$ is any formula in $\mathcal{L}(aa)$.

2. We say that the inner model C(aa) is *club-determined* if every level L'_{α} is.

The aa-model

Theorem

If there are a proper class of Woodin cardinals or PFA holds, then C(aa) is club-determined.

Proof.

Suppose L'_{α} is the least counter-example. W.I.o.g $\alpha < \omega_2^V$. Let δ be Woodin. The hierarchies

$$C(aa)^M, C(aa)^{V[G]}, C(aa_{<\delta})^V$$

are all the same and the (potential) failure of club-determinateness occurs in all at the same level.

The cof-model

The aa-model

HOD₁ 000000

Some ingredients

Lemma

If δ is Woodin, $S \subseteq \delta$ is in M and M thinks that S is stationary, then V[G] thinks that S is stationary.

Lemma

Suppose C(aa) is club-determined, δ is Woodin, \mathbb{P} is the countable stationary tower, $G \subseteq \mathbb{P}$ is generic and M is the associated generic ultrapower. Then $C(aa)^M = C(aa_{<\delta})^V$.

The aa-model

Theorem

Suppose there are a proper class of Woodin cardinals. Then the theory of C(aa) is (set) forcing absolute.

Proof.

Suppose \mathbb{P} is a forcing notion and δ is a Woodin cardinal $> |\mathbb{P}|$. Let $j: V \to M$ be the associated elementary embedding. Now

$$C(aa) \equiv (C(aa))^M = (C(aa_{<\delta}))^V.$$

On the other hand, let $H \subseteq \mathbb{P}$ be generic over *V*. Then δ is still Woodin, so we have the associated elementary embedding $j' : V[H] \rightarrow M'$. Again

$$(C(aa))^{V[H]} \equiv (C(aa))^{M'} = (C(aa_{<\delta}))^{V[H]}.$$

Finally, we may observe that $(C(aa_{<\delta}))^{V[H]} = (C(aa_{<\delta}))^{V}$. Hence

$$(C(aa))^{V[H]} \equiv (C(aa))^V$$
. \Box

The aa-model

Theorem Suppose there are a proper class of Woodin cardinals or PFA holds. Then every regular $\kappa \geq \aleph_1$ is measurable in C(aa).

Proof.

For α big enough for L'_{α} to contain all subsets of κ in C(aa), consider the normal filter:

 $\mathcal{F} = \{ X \subseteq \kappa : X \in L'_{\alpha}, L'_{\alpha} \models aas(sup(s \cap \kappa) \in X) \}.$

Suppose $X \subseteq \kappa$ is in *C*(*aa*). Since L'_{α} is club determined,

 $L'_{lpha}\models \mathit{aas}(\mathsf{sup}(s\cap\kappa)\in X)$ or

 $L'_{\alpha} \models aas(sup(s \cap \kappa) \notin X).$

In the first case $X \in \mathcal{F}$. In the second case $\kappa \setminus X \in \mathcal{F}$.

Theorem

Suppose there is a supercompact cardinal. Then every regular $\kappa \geq \aleph_1$ is measurable in C(aa).

The aa-model

HOD₁ 000000

Theorem If Club Determinacy holds, then C(aa) satisfies CH.

The proof is based on the concept of an aa-premouse.

The aa-model

HOD₁ •00000

The inner model HOD_1 .

<ロ > < 団 > < 団 > < 亘 > < 亘 > < 亘 > の < で 47/52

he cof-model

The aa-mode

HOD₁ ○●○○○○○

Recall:

HOD = $C(L^2)$.

Let

HOD₁ =_{df} $C(\Sigma_1^1)$.

Note:

•
$$\{\alpha < \beta : \mathrm{cf}^{V}(\alpha) = \omega\} \in \mathrm{HOD}_{1}$$

• {
$$(\alpha,\beta) \in \gamma^2 : |\alpha|^V \le |\beta|^V$$
} $\in \text{HOD}_1$

• $\{\alpha < \beta : \alpha \text{ cardinal in } V\} \in HOD_1$

• {
$$(\alpha_0, \alpha_1) \in \beta^2 : |\alpha_0|^V \le (2^{|\alpha_1|})^V$$
} $\in \text{HOD}_1$

• {
$$\alpha < \beta : (2^{|\alpha|})^V = (|\alpha|^+)^V$$
} $\in HOD_1$

The cof-model

The aa-mode

HOD₁ 000000

Lemma

- 1. $C^* \subseteq HOD_1$.
- **2.** $C(Q_1^{MM,<\omega}) \subseteq HOD_1$
- **3**. $C(I) \subseteq HOD_1$.
- 4. If 0^{\sharp} exists, then $0^{\sharp} \in \mathrm{HOD}_1$

The aa-model

Theorem

It is consistent, relative to the consistency of infinitely many weakly compact cardinals that for some λ :

 $\{\kappa < \lambda : \kappa \text{ weakly compact (in V)}\} \notin HOD_1,$

and, moreover, $HOD_1 = L \neq HOD$.

he cof-model

The aa-mode

HOD₁ 000000

Further work

- Further work has focused on closer investigation of the relationship between C^* and C(aa), on inner models of C(aa) with large cardinals, on GCH in these inner models, and on further extensions of C(aa).
- Goldberg, Kennedy, Larson, Magidor, Rajala, Schindler, Steel, Väänänen, Welch, Wilson, Ya'ar.
- The reals of C(aa) are in M_1 (Magidor-Schindler).

The cof-model

The aa-mode

HOD₁ 000000

Thank you!