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Introduction



This talk will be about some interactions between set theory and
homological algebra, particularly around derived functors of the
inverse limit functor. This interaction has been fruitful in both
directions:

• Questions coming from homological algebra have led to the
development of new methods and notions in set theory.

• Set theoretic techniques have allowed for the solution of
various open problems in algebra.

The talk is about the functor lim←−, which takes inverse systems of
abelian groups to abelian groups. In general, this functor fails to
be exact, i.e., fails to preserve short exact sequences. Given n > 0,
the derived functor lim←−

n measures the “n-dimensional”
obstructions to the exactness of lim←−.

Question

Given an n > 0 and an inverse system A of abelian groups, when is
it the case that lim←−

n A = 0?



A brief history of lim←−
The cross-pollination between set theory and the study of derived
limits has been most active during three distinct historical periods:

1 1965–1975
• (Goblot, Mitchell) connections between the (non)vanishing of

lim←−
n and the cofinality of the directed system in question

• (Osofsky) connections between the projective dimension of
certain rings/fields and the value of the continuum

2 1988–1997
• intensive study of the first derived limit of a particular family

of inverse systems indexed by ωω that arose naturally in the
study of strong homology

• connections with familiar topics in set theory (cardinal
characteristics, PFA, OCA, forcing, . . . )

3 2015–now
• development of new tools for understanding higher derived

limits (i.e., lim←−
n for n > 1);

• further applications to pure set theory, strong homology, and
condensed mathematics



I. Inverse systems and
limits



Inverse systems

Definition

Suppose that (Λ,≤) is a directed set.
An inverse system (of abelian groups)
indexed by Λ is a family
A = ⟨Au, πuv | u ≤ v ∈ Λ⟩ such that:

• for all u ∈ Λ, Au is an abelian
group;

• for all u ≤ v ∈ Λ, πuv : Av → Au

is a group homomorphism;

• for all u ≤ v ≤ w ∈ Λ,
πuw = πuv ◦ πvw .



Level morphisms

If A and B are two inverse systems
indexed by the same directed set, Λ,
then a level morphism from A to B
is a family of group homomorphisms
f = ⟨fu : Au → Bu | u ∈ Λ⟩ such
that, for all u ≤ v ∈ Λ,
πBuv ◦ fv = fu ◦ πAuv .

With this notion of morphism, the class of all inverse systems
indexed by a fixed directed set Λ becomes a well-behaved category
AbΛ

op
(in particular, it is an abelian category).



Inverse limits

If A is an inverse system indexed by Λ, then we can form the
inverse limit, lim←−A (or just limA), which is itself an abelian group.
Concretely, limA can be seen as the subgroup of

∏
u∈Λ Au

consisting of all sequences ⟨au | u ∈ Λ⟩ such that, for all
u ≤ v ∈ Λ, we have au = πuv (av ).

If A and B are inverse systems and f : A→ B, then f lifts to a
group homomorphism lim f : limA→ limB. Concretely, this is
done by letting lim f(⟨au | u ∈ Λ⟩) = ⟨fu(au) | u ∈ Λ⟩ for all
⟨au | u ∈ Λ⟩ ∈ limA.

This turns lim into a functor from the category AbΛ
op

of inverse
systems indexed by Λ to the category Ab of abelian groups.

Question: How “nice” is this functor?



Exact sequences

In the category of inverse systems, kernels, images, and quotients
can be defined pointwise in the obvious way. For example, if
f : A→ B is a level morphism, then ker(f) can be seen as the
inverse system ⟨ker(fu), πuv | u ≤ v ∈ Λ⟩, where πuv is simply
πAuv ↾ ker(fv ).

We say that a pair of morphisms A
f−→ B

g−→ C is exact at B if
im(f) = ker(g). A short exact sequence is a sequence

0→ A
f−→ B

g−→ C→ 0 that is exact at A, B, and C.

In a short exact sequence as above, we have ker(f) = 0 (f is
injective) and im(g) = C (g is surjective). It can be helpful to
think of A as a subobject of B and to think of C as the quotient
B/A.



Exact functors

A functor F between abelian categories is said to be exact if it
preserves short exact sequences, i.e., if, whenever

0→ A
f−→ B

g−→ C→ 0 is exact in the source category of F ,

0→ FA
F f−→ FB

Fg−−→ FC→ 0 is exact in the target category of F .

The inverse limit functor is left exact: if 0→ A
f−→ B

g−→ C is exact
at A and B, then 0→ limA

lim f−−→ limB
lim g−−−→ limC is exact at

limA and limB. However, it fails to be exact, i.e., even if
im(g) = C, we might have im(lim g) ̸= limC.

The failure of lim to be exact essentially amounts to the failure of
lim to preserve quotients: if the quotient system B/A is defined,
then it need not be the case that limB/A ∼= limB/ limA.



An example (Λ = ω)

0 A B C 0

...
...

...
...

...

0 Z Z Z/3 0

0 Z Z Z/3 0

0 Z Z Z/3 0

f g

×2 ×2 ×2

×3

×2

mod 3

×2 ×2

×3

×2

mod 3

×2 ×2

×3 mod 3

limA = limB = 0 and limC = Z/3, so applying lim to this short
exact sequence yields 0→ 0→ 0→ Z/3→ 0, which is not exact
at Z/3.



Derived functors
Given any left exact functor F , there is a general procedure for
producing a sequence of (right) derived functors ⟨F n | n ∈ ω \ {0}⟩
that “measure” the failure of the functor F to be exact. These
derived functors then take short exact sequences

0 A B C 0f g

to long exact sequences

0 FA FB FC

F 1A F 1B F 1C

F 2A F 2B F 2C . . .

F f Fg

δ
F 1f F 1g

δ
F 2f F 2g

We will be interested in the derived functors ⟨limn | n ∈ ω \ {0}⟩.



Derived limits and cofinality
A pair of complementary theorems from the early 1970s
demonstrates a connection between the vanishing of derived
inverse limits and the cofinality of the indexing poset.

Theorem (Goblot, 1970 [7])

Suppose that Λ is a directed set, n < ω, and cf(Λ) ≤ ℵn. Then, for
every A ∈ AbΛ

op
, we have

limn+2A = 0.

Theorem (B. Mitchell, 1973 [10])

Suppose that Λ is a directed set, n < ω, and cf(Λ) ≥ ℵn. Then
there is A ∈ AbΛ

op
such that

limn+1A ̸= 0.



Homological dimension

Theorem (Osofsky, 1970 [11])

Let {Fi | i < ω} be a family of fields. Then the global dimension
of

∏
ω Fi is n + 1 iff 2ℵ0 = ℵn (and is infinite if 2ℵ0 > ℵω).

In this paper, as well as in [–], statements on homological
dimension were found to be equivalent to the continuum
hypothesis. In these works, if 2ℵ0 ̸= ℵ1, then ℵ1 appears
in the role of a stumbling block in getting from ℵ0 to 2ℵ0

. . . There is no way in these papers to get one’s hands on
ℵ1. Such a situation is aesthetically (or intuitively, if you
prefer) repugnant to me . . . For those reasons, the hypoth-
esis 2ℵ0 = ℵ1 appears to me to be the natural one applying
to the axiom system in which homological algebra is done,
and 2ℵ0 > ℵω has somewhat upsetting consequences.

Barbara Osofsky, “Homological dimension and cardinality”, 1970



II. The first derived limit



The system A[H]
Fix an abelian group H. Given a function f : ω → ω, let

I (f ) := {(k ,m) ∈ ω × ω | m ≤ f (k)}

and let Af [H] :=
⊕

I (f )H. Given f , g ∈ ωω, let f ≤ g iff
f (k) ≤ g(k) for all k < ω; in this case, let πfg : Ag [H]→ Af [H] be
the projection map. This defines an inverse system

A[H] = ⟨Af , πfg | f , g ∈ ωω, f ≤ g⟩.

If H = Z, we omit it in the notation. Note that

limA[H] =
⊕
ω

∏
ω

H.



Strong homology

The system A naturally arises in the study of the additivity of
strong homology, a homology theory for topological spaces that is
strong shape invariant. Strong homology was developed by Lisica
and Mardešić, and was designed to reflect the properties of spaces
with pathological local behavior more reliably than, e.g., singular
homology.

Given a space X and a p < ω, let H̄p(X ) denote the pth strong
homology group of X .



Additivity of strong homology

A desirable property for a homology theory to have is additivity:

Definition

A homology theory is additive on a class of topological spaces C if,
for every natural number p and every family {Xi | i ∈ J} such that
each Xi and

∐
J Xi are in C, we have⊕

J

Hp(Xi ) ∼= Hp(
∐
J

Xi )

via the map induced by the inclusions

Xi ↪→
∐
J

Xi .

Question: Is strong homology additive?



Infinite earring spaces

Let X n denote the n-dimensional infinite earring space, i.e., the
one-point compactification of the disjoint union of countably
infinitely many copies of the n-dimensional open unit ball.

X 1



Additivity and limn A

Theorem (Mardešić-Prasolov, ‘88 [9])

Suppose that 0 < p < n are natural numbers. Then⊕
N

H̄p(X
n) = H̄p(

∐
N

X n)

if and only if limn−p A = 0.

Consequently, if strong homology is additive, even on closed
subsets of Euclidean space, then limn A = 0 for all n ≥ 1.

Theorem (Mardešić–Prasolov, Simon, 1988 [9])

If CH holds, then lim1A ̸= 0, and hence strong homology is not
additive, even on closed subspaces of Euclidean space.



Describing lim1A

Define an inverse system B = ⟨Bf , πfg | f , g ∈ ωω, f ≤ g⟩ by
letting Bf =

∏
I (f ) Z. Note that limB =

∏
ω×ω Z. This gives rise

to a short exact sequence

0→ A→ B→ B/A→ 0,

which then induces a long exact sequence

0→ limA→ limB→ limB/A→ lim1A→ lim1B→ . . .

B has the property that limn B = 0 for all n > 0. Therefore, we get

lim1A ∼=
limB/A

im(limB)
.



Describing lim1A

Let =∗ denote equality mod finite. For f ∈ ωω, elements of Bf /Af

are the =∗-equivalence classes of functions from I (f ) to Z.
Therefore, elements of limB/A are (equivalence classes of)
families of functions

⟨φf : I (f )→ Z | f ∈ ωω⟩

that are coherent, i.e., φf =∗ φg (on their common domain
I (f ) ∩ I (g)) for all f , g ∈ ωω.

Elements of im(limB) are precisely those coherent families of
functions for which there is a single function ψ : ω × ω → Z such
that ψ ↾ I (f ) =∗ φf for all f ∈ ωω. Such families are called trivial.

We thus see that lim1A = 0 iff every coherent family of functions
is trivial.



Some results

• (Mardešić–Prasolov, Simon, 1988 [9]) If CH holds, then
lim1A ̸= 0.

• (Dow–Simon–Vaughan, 1989 [6]) If d = ℵ1, then lim1A ̸= 0.

• (Dow–Simon–Vaughan, 1989 [6]) If the Proper Forcing Axiom
holds, then lim1A = 0.

• (Todorcevic, 1989 [12]) If the Open Coloring Axiom holds,
then lim1A = 0.

• (Kamo, 1993 [8]) After adding ℵ2-many Cohen reals to any
model of ZFC, we have lim1A = 0.



The system Aκ[H]

Fix an abelian group H and a cardinal κ. Define an inverse system

Aκ[H] = ⟨Aα, παβ | α ≤ β < κ⟩

by letting Aα =
⊕

αH and παβ : Aβ → Aα be the projection map
for all α < β < κ. As with A[H], we can see that lim1Aκ[H] ̸= 0
iff there is a family of functions ⟨φα : α→ H | α < κ⟩ that is

1 coherent: φα =∗ φβ ↾ α for all α ≤ β < κ; and

2 nontrivial: there is no ψ : κ→ H such that φα =∗ ψ ↾ α for
all α < κ.

If |H| < κ, then this is equivalent to the existence of coherent
κ-Aronszajn subtree of <κH. In particular:

• lim1Aω1 ̸= 0;

• (Todorcevic) The P-Ideal Dichotomy implies that lim1Aκ = 0
for all regular κ > ω1.



III. Higher dimensions



Higher coherence

An analogous characterization of the nonvanishing of limn A for
n > 1 exists in terms of higher-dimensional families of functions.
For example, lim2A ̸= 0 if and only if there is a family

Φ = ⟨φfg : I (f ) ∩ I (g)→ Z | f , g ∈ ωω⟩

that is

• alternating: φfg = −φgf for all f , g ∈ ωω;

• 2-coherent: φfh =∗ φfg + φgh for all f , g , h ∈ ωω;

• nontrivial: there is no family ⟨ψf : I (f )→ Z | f ∈ ωω⟩ such
that φfg =∗ ψg − ψf for all f , g ∈ ωω.

Similar characterizaitons exist for higher dimensions, and for the
systems Aκ. In particular, nontrivial elements of limn Aκ can
naturally be seen as n-dimensional analogues of coherent
κ-Aronszajn trees.



A reframing
Coherence and triviality can be reframed in terms of oriented sums
of functions indexed by maximal faces of simplices whose vertices
are labeled by elements of ωω. For example, a 2-dimensional family
⟨φfg | f , g ∈ ωω⟩ is 2-coherent if the oriented sum on the boundary
of every 2-simplex vanishes mod finite:

A 2-d family is trivial if its 2-d
information reduces (mod finite)
to a 1-d family ⟨ψf | f ∈ ωω⟩.



Nonvanishing results

The past decade has seen significant progress in our understanding
of higher derived limits. We begin by surveying some recent
nonvanishing results about limn A.

• (Bergfalk, 2017 [3]) PFA implies lim2A ̸= 0.

• (Veličković–Vignati, 2021 [13]) For all n ≥ 1, it is consistent
that limn A ̸= 0. In particular, if b = d = ℵn and a version of
weak diamond holds at ℵk for all 1 ≤ k ≤ n, then limn A ̸= 0.
The requirement b = d = ℵn was recently weakened by
Casarosa.

• (LH, 2023) If d = ℵn, then limn A[
⊕

ωn
Z] ̸= 0.



Vanishing results

A progression of recent results has shown that we can consistently
obtain simultaneous vanishing of limn A for all n > 0.

• (Bergfalk–LH, 2021 [5]) After adding a weakly compact
number of Hechler reals, limn A = 0 for all n > 0.

• (Bergfalk–Hrušák–LH, 2023 [4]) After adding ℶω-many Cohen
reals, limn A = 0 for all n > 0. In particular, this conclusion is
consistent with 2ℵ0 = ℵω+1.

• (Bannister, 2023 [1]) In either of the above models, we in fact
have limn A[H] = 0 for all n > 0 and all abelian groups H.



Questions

A number of prominent open questions remain. For example:

• Does d = ℵn imply limn A ̸= 0? More generally, if limn A = 0
for all n > 0, must we have 2ℵ0 > ℵω?
• How much simultaneous nonvanishing of limn A can we have?

Can we have limn A ̸= 0 for infinitely many (or all) n > 0?

• One can define an analogous system Aκω indexed by κω
instead of ωω. It is known that, for all κ, lim1Aκω = 0 iff
lim1A = 0. Is this also true of limn for n > 1?



Back to Aκ

There has also been recent progress on our understanding of
limn Aκ. Classical results already gave us some information below
ℵω:
• (Goblot) For all m < n < ω, limn Aωm = 0.

• (Mitchell) For all n < ω, limn Aωn [
⊕

n Z] ̸= 0.

Recall also that PID (and hence PFA) implies that lim1Aκ = 0 for
all regular κ > ω1. Against this backdrop, we have the following
two complementary results.

• If κ is weakly compact, then limn Aκ = 0 for all n > 0. If λ is
strongly compact, then limn Aκ[H] = 0 for all n > 0, all
κ ≥ λ, and all abelian groups H.

• (Bergfalk–LH) If V = L, then limn Aκ ̸= 0 for all n > 0 and
every regular κ ≥ ℵn that is not weakly compact.



Some vanishing results

Theorem (Bergfalk–LH–Zhang)

Relative to the consistency of a supercompact cardinal, it is
consistent that limn Aℵω+1 [H] = 0 for all 1 ≤ n < ω and all abelian
groups H.

This leaves open the question of the consistent vanishing of
limn Aℵm for 1 < n < m < ω.

Theorem (Bergfalk–LH–Zhang)

Suppose that κ is weakly compact. Then, in the extension by the
Mitchell forcing M(ω1, κ), there are no 2-coherent, nontrivial
families ⟨φαβ : α→ Z | α < β < ω3⟩ of countably supported
functions.

If V = L, the families witnessing lim2Aℵ3 ̸= 0 can be constructed
to consist of countably supported functions.



Questions

The most pressing questions about Aκ concern the situation below
ℵω.

Question

Is it true that, for all n ≥ 2, we have limn Aℵn ̸= 0?

This is true for n = 1, or if Aℵn is replaced by Aℵn [
⊕

ωn
Z]. One

promising approach to this question involves higher-dimensional
analogues of Todorcevic’s walks on ordinals method.

Question

Given n < m < ω, is it consistent that limn Aℵm = 0? What about
limn Aℵm [H] = 0 for all abelian groups H?

A positive answer would be a higher-dimensional analogue of the
result that consistently there are no coherent ℵ2-Aronszajn trees.
We expect a positive answer, but this seems to require new ideas.



IV. Applications



Additivity of strong homology

Recall that, if there is n > 0 for which limn A ̸= 0, then strong
homology fails to be additive, even on the class of closed subspaces
of Euclidean space. It turns out that obtaining a model in which
limn A = 0 for all n > 0 removed all obstacles to the additivity of
strong homology on a broad class of spaces.

Theorem (Bannister-Bergfalk-Moore ’23 [2], Bannister, ’23 [1])

After adding either a weakly compact number of Hechler reals or
ℶω-many Cohen reals, strong homology is additive on the class of
locally compact separable metric spaces.

A ZFC counterexample to the additivity of strong homology was
found by Prasolov. A simpler example was recently found by
Bergfalk–LH.



Condensed mathematics

Condensed mathematics is a framework for applying algebraic tools
to the study of algebraic structures carrying topologies, developed
recently by Dustin Clausen and Peter Scholze. Classical categories
of such objects, e.g., TopAb, are poorly behaved algebraically.
Condensed mathematics aims to solve this by embedding these
classical categories into richer categories with better algebraic
properties.



Condensed abelian groups

Let ED denote the category of extremally disconnected compact
Hausdorff spaces. A condensed abelian group is a contravariant
functor T : ED→ Ab such that

• T (∅) = ∗;
• for all S0,S1 ∈ ED, T (S0 ⊔ S1) = T (S0)× T (S1).

If A is a topological abelian group, then one obtains a condensed
abelian group A by setting A(S) = Cont(S ,A) for all S ∈ ED.
This describes a fully faithful embedding of the category of
compactly generated topological abelian groups into the category
CondAb of condensed abelian groups.



Sequential limits

Recall that Extn(·, ·) is the nth derived functor of Hom(·, ·). Often
when doing computations in condensed mathematics, one
considers a sequential limit

. . .↠ M2 ↠ M1 ↠ M0

of countable discrete abelian groups and wants to compute
ExtnCondAb(lim←−M i ,N) for some discrete abelian group N. In such
situations, it would be helpful if we could pull the limit outside,
i.e., if

ExtnCondAb(lim←−M i ,N) = lim−→ExtnCondAb(M i ,N).

The assertion that this can always be done turns out to be
equivalent to the assertion that limn A[H] = 0 for all n > 0 and all
abelian groups H.



Assuming that limn A[H] = 0 for all n > 0 and all abelian groups
H has various nice foundational consequences for condensed
mathematics. For example:

• It implies that the category of separable pro-abelian groups
embeds fully faithfully into the category of condensed abelian
groups.

• It implies that the classical duality between Banach spaces
and Smith spaces extends to a derived internal duality in the
condensed setting, at least when restricted to separable
nonarchimedean Banach spaces. (It remains an interesting
question the extent to which something similar can be said
about condensed archimedean Banach spaces.)

These are prominent examples on a growing list of “nice”
statements that are consistent but require 2ℵ0 > ℵω, providing
some mild contrast with Osofsky’s earlier quote about the
“upsetting consequences” of this hypothesis.
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