On forcing with side conditions

David Asperó

University of East Anglia

Perspectives on Set Theory IMPAN, Warsaw, Nov. 2023

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

MM^{++} is a successful axiom (for $H(\omega_2)$)

- (1) (**Maximal forcing axiom**) MM^{++} is a consistent (relative to a supercompact), provably maximal forcing axiom relative to collections of \aleph_1 -many dense sets.
- (2) (**Completeness modulo forcing**) If MM⁺⁺ holds, then $Th(H(\omega_2)^V) = Th(H(\omega_2)^{V^{\mathcal{P}}})$ for every forcing \mathcal{P} such that $\Vdash_{\mathcal{P}} MM^{++}$ (since MM⁺⁺ \Rightarrow (*) (A.–Schindler)).
- (2) (Π_2 maximality) If MM⁺⁺ holds, then ($H(\omega_2); \in, NS_{\omega_1}$) $\models \sigma$ whenever σ is a Π_2 sentence such that $(H(\omega_2); \in, NS_{\omega_1}) \models \sigma$ is forcible (again, since MM⁺⁺ \Rightarrow (*)); in fact, tinkering a bit with the proof that MM⁺⁺ \Rightarrow (*) one can show that already MM is Π_2 maximal for the theory of ($H(\omega_2); \in$) (A.–Schindler)).

MM^{++} is a successful axiom (for $H(\omega_2)$)

- (1) (**Maximal forcing axiom**) MM^{++} is a consistent (relative to a supercompact), provably maximal forcing axiom relative to collections of \aleph_1 -many dense sets.
- (2) (**Completeness modulo forcing**) If MM⁺⁺ holds, then $Th(H(\omega_2)^V) = Th(H(\omega_2)^{V^{\mathcal{P}}})$ for every forcing \mathcal{P} such that $\Vdash_{\mathcal{P}} MM^{++}$ (since MM⁺⁺ \Rightarrow (*) (A.–Schindler)).
- (2) (Π_2 **maximality**) If MM⁺⁺ holds, then ($H(\omega_2); \in, NS_{\omega_1}$) $\models \sigma$ whenever σ is a Π_2 sentence such that $(H(\omega_2); \in, NS_{\omega_1}) \models \sigma$ is forcible (again, since MM⁺⁺ \Rightarrow (*)); in fact, tinkering a bit with the proof that MM⁺⁺ \Rightarrow (*) one can show that already MM is Π_2 maximal for the theory of ($H(\omega_2); \in$) (A.–Schindler)).

MM^{++} is a successful axiom (for $H(\omega_2)$)

- (1) (**Maximal forcing axiom**) MM^{++} is a consistent (relative to a supercompact), provably maximal forcing axiom relative to collections of \aleph_1 -many dense sets.
- (2) (**Completeness modulo forcing**) If MM⁺⁺ holds, then $Th(H(\omega_2)^V) = Th(H(\omega_2)^{V^P})$ for every forcing \mathcal{P} such that $\Vdash_{\mathcal{P}} MM^{++}$ (since MM⁺⁺ \Rightarrow (*) (A.–Schindler)).
- (2) (Π_2 maximality) If MM⁺⁺ holds, then ($H(\omega_2); \in, NS_{\omega_1}$) $\models \sigma$ whenever σ is a Π_2 sentence such that $(H(\omega_2); \in, NS_{\omega_1}) \models \sigma$ is forcible (again, since MM⁺⁺ \Rightarrow (*)); in fact, tinkering a bit with the proof that MM⁺⁺ \Rightarrow (*) one can show that already MM is Π_2 maximal for the theory of ($H(\omega_2); \in$) (A.–Schindler)).

Are there competitors for MM⁺⁺ higher up? In other words, are there axioms approximating any of (1)–(3) for $H(\omega_3)$, or $H(\kappa)$ for some higher κ ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

MM^{++} and completeness for $H(\omega_3)$

The completeness provided by (*) for the theory of $H(\omega_2)$ certainly doesn't extend to $H(\omega_3)$: Force \Box_{ω_1} by $<\omega_2$ -distributive forcing, hence preserving (*).

How about MM⁺⁺? Does MM⁺⁺ provide a complete theory, modulo forcing, for $H(\omega_3)$?

The answer of course is No, but it's not so straightforward to find examples:

- (Todorčević) PFA implies $\neg \Box_{\omega_1}$.
- (Sakai) MM implies partial square on S^{ω2}_{ω1}.
- PFA implies $2^{\aleph_1} = \aleph_2$ (Todorčević, Veličković), so it implies $\Diamond(S_{\omega}^{\omega_2})$ (Shelah).

(日) (日) (日) (日) (日) (日) (日)

• (Baumgartner) PFA implies $\Diamond(S_{\omega_1}^{\omega_2})$.

Given a cardinal κ of uncountable cofinality and a stationary set $S \subseteq \kappa$, *Strong Club Guessing at S*, SCG(*S*), is the following statement:

There is a sequence $(C_{\delta} : \delta \in S)$ such that

- for every $\delta \in S$, C_{δ} is a club of δ , and
- for every club D ⊆ κ there are club-many δ ∈ D such that if δ ∈ S, then C_δ \ α ⊆ D for some α < δ.

(日) (日) (日) (日) (日) (日) (日)

Theorem

Add(ω_2, ω_3) forces $\neg SCG(S)$ for every stationary $S \subseteq S_{\omega}^{\omega_2}$. Hence, if MM^{++} holds, then forcing with Add(ω_2, ω_3) yields a model of $MM^{++} + \neg SCG(S)$ for every stationary $S \subseteq S_{\omega}^{\omega_2}$.

Theorem

Let κ be a supercompact cardinal, and let \mathcal{P} be the standard RCS-iteration of length κ forcing MM^{++} . Let $S = (S_{\omega}^{\omega_2})^V$. Then $\mathcal{P} * \dot{\mathcal{Q}}(S)$ forces $MM^{++} + SCG(S)$. Here, $\dot{\mathcal{Q}}(S)$ is a natural \aleph_1 -support iteration of length ω_3 for adding some $(\dot{C}_{\delta} : \delta \in S)$ and then shooting clubs through

 $\{\delta \in \omega_{\mathbf{2}} : \delta \in \mathbf{S} \Rightarrow \dot{\mathbf{C}}_{\delta} \setminus \alpha \subseteq \dot{\mathbf{D}}_{\alpha} \text{ for some } \alpha < \delta\},\$

where \dot{D}_{α} is a club of ω_2 .

Question: Is there any forcible Σ_2 axiom A deciding the theory of $H(\omega_3)$ modulo forcing?

Theorem

Add(ω_2, ω_3) forces $\neg SCG(S)$ for every stationary $S \subseteq S_{\omega}^{\omega_2}$. Hence, if MM^{++} holds, then forcing with Add(ω_2, ω_3) yields a model of $MM^{++} + \neg SCG(S)$ for every stationary $S \subseteq S_{\omega}^{\omega_2}$.

Theorem

Let κ be a supercompact cardinal, and let \mathcal{P} be the standard RCS-iteration of length κ forcing MM^{++} . Let $S = (S_{\omega}^{\omega_2})^V$. Then $\mathcal{P} * \dot{\mathcal{Q}}(S)$ forces $MM^{++} + SCG(S)$. Here, $\dot{\mathcal{Q}}(S)$ is a natural \aleph_1 -support iteration of length ω_3 for adding some $(\dot{C}_{\delta} : \delta \in S)$ and then shooting clubs through

 $\{\delta \in \omega_2 : \delta \in \boldsymbol{S} \Rightarrow \dot{\boldsymbol{C}}_{\delta} \setminus \alpha \subseteq \dot{\boldsymbol{D}}_{\alpha} \text{ for some } \alpha < \delta\},\$

where \dot{D}_{α} is a club of ω_2 .

Question: Is there any forcible Σ_2 axiom *A* deciding the theory of $H(\omega_3)$ modulo forcing?

Limitations on completeness

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

(Woodin) Suppose the Ω conjecture and the AD⁺-conjecture are true in all set-generic extensions. Then there is no forcible Σ_2 axiom A such that A provides, modulo forcing, a complete theory for Σ_3^2 sentences.

Theorem

(Woodin) Suppose the Ω conjecture holds and there is a proper class of Woodin cardinal. Then there is no forcible Σ_2 axiom A such that A provides, modulo forcing, a complete theory for $H(\delta_0^+)$, where δ_0 is the first Woodin cardinal.

Limitations on completeness

Theorem

(Woodin) Suppose the Ω conjecture and the AD⁺-conjecture are true in all set-generic extensions. Then there is no forcible Σ_2 axiom A such that A provides, modulo forcing, a complete theory for Σ_3^2 sentences.

Theorem

(Woodin) Suppose the Ω conjecture holds and there is a proper class of Woodin cardinal. Then there is no forcible Σ_2 axiom A such that A provides, modulo forcing, a complete theory for $H(\delta_0^+)$, where δ_0 is the first Woodin cardinal.

High Π_2 maximality?

(日) (日) (日) (日) (日) (日) (日)

 Π_2 forcing maximality for the theory $H(\omega_3)$ is false, at least in the presence of a Mahlo cardinal:

Both \Box_{ω_1} and $\neg \Box_{\omega_1}$ can be forced, and \Box_{ω_1} is $\Sigma_1(\omega_2)$ over $H(\omega_3)$.

Question: Does ZFC prove that Π_2 forcing maximality for the theory $H(\omega_3)$ is false? Does it in fact prove that there is a $\Sigma_1(\omega_2)$ sentence σ such that both σ and $\neg \sigma$ are forcible?

A vague question:

Question: Can there (still) be any reasonable successful analogue of MM^{++} , as forcing axiom, for $H(\omega_3)$ or higher up?

- Such an analogue of MM⁺⁺, if it extends FA_{ω2}({Cohen}), should presumably imply 2^{ℵ0} = ℵ₃.
- Alternatively, we could instead focus, in the context of CH, on interesting classes Γ of countably closed forcings.

(日) (日) (日) (日) (日) (日) (日)

Strong properness

(Mitchell) A partial order \mathcal{P} is *strongly proper* iff for every large enough cardinal θ , every countable $M \preccurlyeq H(\theta)$ such that $\mathcal{P} \in M$, and every $p \in \mathcal{P} \cap M$ there is some $q \leq_{\mathcal{P}} p$ which is *strongly* (M, \mathcal{P}) -*generic*, i.e., for every $q' \leq_{\mathcal{P}} q$ there is some $\pi_M(q') \in \mathcal{P} \cap M$ such that every $r \in \mathcal{P} \cap M$ with $r \leq_{\mathcal{P}} \pi_M(q')$ is compatible with q'.

Examples of strongly proper posets:

- Cohen forcing
- Baumgartner's forcing for adding a club of ω_1 with finite conditions.

Caution: ccc does not imply strongly proper. In fact, most ccc forcings are not strongly proper.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Some basic facts

Fact

If \mathcal{P} is strongly proper, $M \preccurlyeq H(\theta)$ is countable, $\mathcal{P} \in M$, q is strongly (M, \mathcal{P}) -generic, $G \subseteq \mathcal{P}$ is generic over V, and $q \in G$, then $G \cap M$ is $\mathcal{P} \cap M$ -generic over V.

Corollary

Every ω -sequence of ordinals added by a strongly proper forcing notion is in a generic extension of V by Cohen forcing.

Lemma

(Neeman) Suppose \mathcal{P} is strongly proper. Then \mathcal{P} does not add new ht(T)-branches through trees T such that $cf(ht(T)) \ge \omega_1$.

Some pure side condition forcings (chains)

(1) (Todorčević) \mathbb{C}_1 : conditions are chains $\mathcal{C} = \{M_0, \dots, M_n\}$ with $M_i \preccurlyeq H(\theta), |M_i| = \aleph_0, M_i \in M_{i+1}$ for all *i*.

- \mathbb{C}_1 is strongly proper for countable models.
- C₁ covers H(θ)^V by an ∈-chain of length ω₁ of countable models in V.
- (2) (Neeman) \mathbb{C}_2 : conditions are $\mathcal{C} = \{Q_0, \ldots, Q_n\}$, where
 - (a) Q_i is either a countable $M \leq (\theta)$ or $N \leq (\theta)$ such that $|N| = \aleph_1$ and N internally club (IC).
 - (b) $Q_i \in Q_{i+1}$ for all i < n.
 - (c) If $N, M \in \mathcal{N}, N \in M, |N| = \aleph_1, |M| = \aleph_0$, then $N \cap M \in \mathcal{C}$.
 - C₂ is strongly proper for countable models and IC models of size ℵ₁.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

C₂ covers H(θ)^V by an ∈-chain of length ω₁ of ℵ₁-sized models in V.

A limitation

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fact (Veličković) The natural pure side condition forcing \mathbb{C}_3 for three types of models (say countable, size \aleph_1 IC, and size \aleph_2 IC) doesn't work.

More pure side condition forcings (symmetric systems)

- (3) (Todorčević, A.–Mota, ...) S₁: conditions are finite collections N of countable M ≼ H(θ) such that
 - (a) For all M_0 , $M_1 \in \mathcal{N}$, if $\delta_{M_0} = \delta_{M_1}$ ($\delta_M = M \cap \omega_1$), then $M_0 \cong M_1$ and the isomorphism

$$\Psi_{M_0,M_1}: M_0 \longrightarrow M_1$$

is the identity on $M_0 \cap M_1$.

- (b) For all M_0 , $M_1 \in \mathcal{N}$, if $\delta_{M_0} = \delta_{M_1}$, then Ψ_{M_0,M_1} " $\mathcal{N} \cap M_0 = \mathcal{N} \cap M_1$.
- (c) For all M_0 , $M_1 \in \mathcal{N}$, if $\delta_{M_0} < \delta_{M_1}$, then there is some $M'_1 \in \mathcal{N}$ such that $M_0 \in M'_1$ and $\delta_{M'_1} = \delta_{M_1}$.

(\mathcal{N} is a symmetric system)

- S₁ is strongly proper for countable models.
- (CH) S₁ has the ℵ₂-c.c. and preserves CH.

- (4) (Gallart, Hoseini Naveh) S₂: conditions are symmetric systems N of models of two types (countable and IC of size ℵ₁).
 - (a) Natural combination of Neeman's notion of two-type chain of models (ℂ₂) and the notion of symmetric system (𝔅₁).
 - (b) Given two models M_0 , $M_1 \in \mathcal{N}$ of the same height ϵ_M

 $(= \sup(M \cap \omega_2))$, we ask that in fact

 $(\operatorname{Hull}(M_0,\omega_1);\in,M_0)\cong(\operatorname{Hull}(M_1,\omega_1);\in,M_1)$

• S₂ is strongly proper for countable models and for ℵ₁-sized IC models.

• $(2^{\aleph_1} = \aleph_2) \mathbb{S}_2$ has the \aleph_3 -c.c. and preserves $2^{\aleph_1} = \aleph_2$.

An application of S_2

A strong ω_3 -chain of subsets of ω_1 is a sequence $(X_i : i < \omega_3)$ of subsets of ω_1 such that for all $i_0 < i_1$,

- $X_{i_0} \setminus X_{i_1}$ is finite and
- $|X_{i_1} \setminus X_{i_0}| = \aleph_1.$

Theorem^{*} (A.–Gallart) (GCH) There is a forcing notion \mathcal{P} with the following properties.

- (1) \mathcal{P} is proper for countable models and for IC models of size \aleph_1 .
- (2) \mathcal{P} has the \aleph_3 -chain condition.
- (3) \mathcal{P} forces the existence of a strong ω_3 -chain of subsets of ω_1 .
- $\mathcal P$ uses side conditions from $\mathbb S_2$ in a crucial way.

This result is optimal:

Theorem

(Inamdar) There is no strong ω_3 -chain of subsets of ω_2 .

A strong ω_3 -chain of functions from ω_1 into ω_1 is a sequence $(h_i : i < \omega_3)$ of functions $h_i : \omega_1 \longrightarrow \omega_1$ such that for all $i_0 < i_1 < \omega_3$, $\{\tau \in \omega_1 : h_{i_1}(\tau) \le h_{i_n}(\tau)\}$

is finite.

Question: Is it consistent to have a strong ω_3 -chain of functions from ω_1 into ω_1 ?

Extending strong properness to $\kappa > \omega$

The notion of strong properness can be naturally extended to higher cardinals:

Suppose κ is an infinite regular cardinal such that $\kappa^{<\kappa} = \kappa$. A partial order \mathcal{P} is κ -strongly proper iff for every $M \preccurlyeq H(\theta)$ such that $\mathcal{P} \in M$ and such that

(ロ) (同) (三) (三) (三) (○) (○)

- $|M| = \kappa$, and
- ${}^{<\kappa}M\subseteq M$,

every \mathcal{P} -condition in *M* can be extended to a strongly (M, \mathcal{P}) -generic condition.

We will need the following closure property:

Given an infinite regular cardinal κ , a partial order \mathcal{P} is $<\kappa$ -directed closed with greatest lower bounds in case every directed subset X of \mathcal{P} (i.e., every finite subset of X has a lower bound in \mathcal{P}) such that $|X| < \kappa$ has a greatest lower bound in \mathcal{P} .

(日) (日) (日) (日) (日) (日) (日)

We will also say that \mathcal{P} is κ -lattice.

All facts about strongly proper (i.e., ω -strongly proper) forcing we have seen extend naturally to κ -strongly proper forcing notion which are κ -lattice (assuming $\kappa^{<\kappa} = \kappa$).

For example, every κ -sequence of ordinals added by a forcing in this class belongs to a generic extension by adding a Cohen subset of κ .

(日) (日) (日) (日) (日) (日) (日)

Lemma

(Reflection Lemma) Let κ be an infinite regular cardinal such that $\kappa^{<\kappa} = \kappa$. Suppose \mathcal{P} is a κ -lattice and κ -strongly proper forcing. If θ is large enough and $(M_i)_{i < \kappa^+}$ is a \subseteq -continuous \in -chain of elementary submodels of $H(\theta)$ such that $\mathcal{P} \in M_i$, $|M_i| = \kappa$, and ${}^{<\kappa}M_i \subseteq M_i$ for all $i \in S_{\kappa}^{\kappa^+}$, then $\mathcal{P} \cap N$ is κ -lattice and κ -strongly proper, for $N = \bigcup_{i < \kappa^+} M_i$.

Proof.

Let χ large enough and $M^* \preccurlyeq H(\chi)$ such that \mathcal{P} , $(M_i)_{i < \kappa^+} \in M^*$, $|M^*| = \kappa$ and ${}^{<\kappa}M^* \subseteq M^*$. Then $M^* \cap N = M_{\delta} \in N$ for $\delta = M^* \cap \kappa^+$. But every strongly $(M_{\delta}, \mathcal{P})$ -generic is strongly $(M^*, \mathcal{P} \cap N)$ -generic.

Compare the above reflection property with the reflection of κ -c.c. forcing to substructures *M* such that ${}^{<\kappa}M \subseteq M$.

Theorem

(A.–Cox–Karagila–Weiss) Assume GCH, and let κ be infinite regular cardinal. Then there is a κ -lattice and κ -strongly proper forcing \mathcal{P} which forces $2^{\kappa} = \kappa^{++}$ together with the κ -Str PFA (= FA_{$\kappa^+}(<math>\kappa$ -lattice + κ -strongly proper)).</sub>

Proof sketch: Let $\theta = \kappa^{++}$. By first forcing with $Coll(\kappa^+, <\theta)$, we may assume that $\Diamond(S_{\kappa^+}^{\theta})$ holds.

Our forcing \mathcal{P} is \mathcal{P}_{θ} , where $(\mathcal{P}_{\alpha}, \dot{\mathcal{Q}}_{\beta}, : \alpha \in E \cup \{\theta\}, \beta \in E)$, $E \subseteq S^{\theta}_{\kappa^{++}}$, is a $<\kappa$ -support iteration à la Neeman with side conditions from $\mathbb{C}_2(\mathcal{S}, \mathcal{T})$, for

$$\mathcal{S} = \{ \boldsymbol{M} : |\boldsymbol{M}| = \kappa, \,^{<\kappa} \boldsymbol{M} \subseteq \boldsymbol{M} \}$$

and

$$\mathcal{T} = \{ N_{\alpha} : \alpha \in E \},\$$

where $(N_{\alpha} : \alpha \in E)$ is some filtration of $H(\theta)$.

Condition are $p = (w_p, C_p)$, where

- dom $(W_p) \in [\theta]^{<\kappa};$
- $\mathcal{C}_{\rho} \in \mathbb{C}_{2}(\mathcal{S}, \mathcal{T});$
- for all $\alpha \in \operatorname{dom}(w_p)$, $N_{\alpha} \in \mathcal{C}_p$ and

 $(w_p \upharpoonright \alpha, \mathcal{N}_p \cap N_\alpha) \Vdash_{\mathcal{P}_\alpha} "w_p(\alpha)$ is strongly $(M[\dot{G}_\alpha], \dot{\mathcal{Q}}_\alpha)$ -generic"

for all $M \in C_p \cap S$ with $\alpha \in M$.

At stage α , if our diamond feeds us a \mathcal{P}_{α} -name \dot{Q}_{α} for a κ -lattice κ -strongly proper forcing, then we let $\dot{Q}_{\alpha} = \dot{Q}_{\alpha}$.

The Reflection Property is used to show that our construction captures κ -strongly proper forcings of arbitrary size.

The proof uses the fact that every κ -sequence of ordinals is in a κ -Cohen extension since each \mathcal{P}_{α} is κ -lattice and κ -strongly proper, which enables a typical model $N_{\alpha} \in \mathcal{T}$ to have access to the relevant \mathcal{P}_{α} -names for κ -sized elementary submodels M (so the relevant $\dot{\mathcal{Q}}_{\alpha}$'s are in fact such that $\Vdash_{\mathcal{P}_{\alpha}} \dot{\mathcal{Q}}_{\alpha}$ is κ -strongly proper).

Also: The proof crucially uses the fact that our forcings are κ -lattice (it would not work if we just assumed $<\kappa$ -directed closedness).

 κ -Str PFA does not decide 2^{κ} . In fact:

Theorem

Assume GCH, and let $\kappa < \kappa^+ < \kappa^{++} \leq \theta$ be infinite regular cardinals. Suppose $\Diamond(S_{\kappa^+}^{\kappa^{++}})$ holds. Then there is a κ -lattice and κ -strongly proper forcing \mathcal{P} which forces $2^{\kappa} = \theta$ together with κ -Str PFA.

Proof sketch: We build an iteration

$$(\mathcal{P}_{\alpha}, \dot{\mathcal{Q}}_{\beta} : \alpha \in \mathcal{E} \cup \{\kappa^{++}\}, \beta \in \mathcal{E})$$

as before, except that at each stage $\alpha \in E$ now we look at whether our diamond feeds us a $\mathcal{P}_{\alpha} \times \operatorname{Add}(\kappa, \kappa^+)$ -name \dot{Q}_{α} for a κ -lattice and κ -strongly proper poset. If so we let $\dot{Q}_{\alpha} = \operatorname{Add}(\kappa, \kappa^+) * \dot{Q}_{\alpha}$. The forcing witnessing the theorem is

 $\mathcal{P} = \mathcal{P}_{\kappa^{++}} imes \mathsf{Add}(\kappa, \theta)$

To see this, take a κ -lattice κ -strongly proper forcing in the

extension via \mathcal{P} . By the Reflection Property it reflects to a forcing of size κ^+ . Let \dot{Q} be a \mathcal{P} -name for the corresponding forcing.

By κ^{++} -c.c. of \mathcal{P} we may identify \dot{Q} with a $\mathcal{P}_{\kappa^{++}} \times \operatorname{Add}(\kappa, \kappa^+)$ -name, which we may code by a subset of κ^{++} . Now we use our diamond to capture \dot{Q} as in the proof of the previous theorem.

Again, we use the fact that every κ -sequence of ordinals in the final model is in a κ -Cohen extension since $\mathcal{P}_{\alpha} \times \text{Add}(\kappa, \kappa^+)$ is κ -lattice and κ -strongly proper.

As far as I know this is the first example of a forcing axiom $FA_{\kappa^+}(\Gamma)$ such that $FA_{\kappa^{++}}(\Gamma)$ is false but nevertheless $FA_{\kappa^+}(\Gamma)$ is compatible with 2^{κ} arbitrarily large:

To see that $FA_{\kappa^{++}}(\kappa\text{-lattice} + \kappa\text{-strongly proper})$ is false, look at the forcing \mathbb{P} of $<\kappa\text{-length} \in\text{-chains of suitable models}$ $N \preccurlyeq H(\kappa^{++})$ of size κ (this is \mathbb{C}_1 in this context). An application of $FA_{\kappa^{++}}(\{\mathbb{P}\})$ would cover κ^{++} with a κ^+ -chain of models of size κ .

(日) (日) (日) (日) (日) (日) (日)

Again, we use the fact that every κ -sequence of ordinals in the final model is in a κ -Cohen extension since $\mathcal{P}_{\alpha} \times \text{Add}(\kappa, \kappa^+)$ is κ -lattice and κ -strongly proper.

As far as I know this is the first example of a forcing axiom $FA_{\kappa^+}(\Gamma)$ such that $FA_{\kappa^{++}}(\Gamma)$ is false but nevertheless $FA_{\kappa^+}(\Gamma)$ is compatible with 2^{κ} arbitrarily large:

To see that $FA_{\kappa^{++}}(\kappa$ -lattice + κ -strongly proper) is false, look at the forcing \mathbb{P} of $<\kappa$ -length \in -chains of suitable models $N \preccurlyeq H(\kappa^{++})$ of size κ (this is \mathbb{C}_1 in this context). An application of $FA_{\kappa^{++}}({\mathbb{P}})$ would cover κ^{++} with a κ^+ -chain of models of size κ .

Applications of κ -Str PFA

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Not many.

- $\mathfrak{d}(\kappa) > \kappa^+$
- The covering number of natural meagre ideals is > κ⁺.
- Weak failures of Club-Guessing at *κ*.

Relaxing strongness?

Let us say that a forcing \mathcal{P} is κ -MRP-*strongly proper* if for every large enough θ , every $M \preccurlyeq H(\theta)$ of size κ such that ${}^{<\kappa}M \subseteq M$ and $\mathcal{P} \in M$, and every $p \in M \cap \mathcal{P}$ there is $q \leq_{\mathcal{P}} p$ such that for every $q' \leq_{\mathcal{P}} q$,

 $\mathcal{X}_{q'} = \{ X \in [M]^{\kappa} : \exists \pi_X(q') \in \mathcal{P} \cap X \, \forall r \leq_{\mathcal{P}} \pi_X(q'), r \in X \longrightarrow r ||_{\mathcal{P}}q' \}$

is *M*-stationary (i.e., for every club $E \in M$ there is some $X \in E \cap \mathcal{X}_{q'} \cap M$).

 $\mathsf{FA}_{\kappa^+}(\{\mathcal{P} : \mathcal{P} \ \kappa\text{-lattice and } \kappa\text{-MRP-strongly proper}\}) \text{ implies a natural high analogue of MRP which in turn implies } 2^{\kappa^+} = \kappa^{++}.$

Theorem

Suppose $\kappa \ge \omega_1$ is a regular cardinal and $\kappa^{<\kappa} = \kappa$. Then

 $FA_{\kappa^+}(\{\mathcal{P} : \mathcal{P} \; \kappa\text{-lattice}, \; \kappa^+\text{-c.c.}, \text{ and } \kappa\text{-MRP-strongly proper}\})$

is false.

Proof sketch: For the proof we use ...

◆ロト ◆課 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のへで

Relaxing strongness?

Let us say that a forcing \mathcal{P} is κ -MRP-*strongly proper* if for every large enough θ , every $M \preccurlyeq H(\theta)$ of size κ such that ${}^{<\kappa}M \subseteq M$ and $\mathcal{P} \in M$, and every $p \in M \cap \mathcal{P}$ there is $q \leq_{\mathcal{P}} p$ such that for every $q' \leq_{\mathcal{P}} q$,

 $\mathcal{X}_{q'} = \{X \in [M]^{\kappa} : \exists \pi_X(q') \in \mathcal{P} \cap X \, \forall r \leq_{\mathcal{P}} \pi_X(q'), r \in X \longrightarrow r ||_{\mathcal{P}}q'\}$

is *M*-stationary (i.e., for every club $E \in M$ there is some $X \in E \cap \mathcal{X}_{q'} \cap M$).

 $\mathsf{FA}_{\kappa^+}(\{\mathcal{P} : \mathcal{P} \ \kappa\text{-lattice and } \kappa\text{-MRP-strongly proper}\}) \text{ implies a natural high analogue of MRP which in turn implies } 2^{\kappa^+} = \kappa^{++}.$

Theorem

Suppose $\kappa \ge \omega_1$ is a regular cardinal and $\kappa^{<\kappa} = \kappa$. Then

 $FA_{\kappa^+}(\{\mathcal{P} : \mathcal{P} \; \kappa\text{-lattice}, \; \kappa^+\text{-c.c.}, \text{ and } \kappa\text{-MRP-strongly proper}\})$

is false.

Proof sketch: For the proof we use ...

An inconsistent uniformization principle

Theorem

(Shelah) Let $\kappa \geq \omega_1$ be a regular cardinal and let $\langle C_{\alpha} : \alpha \in S_{\kappa}^{\kappa^+} \rangle$ be a club-sequence. Then there is a sequence

 $\langle f_{\alpha} : \alpha \in S_{\kappa}^{\kappa^+} \rangle$

of colourings, with $f_{\alpha} : C_{\alpha} \longrightarrow \{0, 1\}$ for all α , for which there is no function

$$G:\kappa^+\longrightarrow 2$$

such that for all $\alpha \in S_{\kappa}^{\kappa^+}$,

$$G(\xi) = f_{\alpha}(\xi)$$

(日) (日) (日) (日) (日) (日) (日)

for club-many $\xi \in C_{\alpha}$.

Now let $\langle C_{\alpha} : \alpha \in S_{\kappa}^{\kappa^+} \rangle$ be a club-sequence and $\langle f_{\alpha} : \alpha \in S_{\kappa}^{\kappa^+} \rangle$ be a sequence of colourings which cannot be club-uniformized.

Let \mathcal{P} be the forcing consisting of $<\kappa$ -sized functions p with $dom(p) \subseteq S_{\kappa}^{\kappa^+}$ such that

(1) for all $\alpha \in \text{dom}(p)$, $p(\alpha) < \alpha$, and

(2) for all $\alpha_0 < \alpha_1$ in dom(*p*), if $\xi \in (C_{\alpha_0} \setminus p(\alpha_0)) \cap (C_{\alpha_1} \setminus p(\alpha_1))$, then $f_{\alpha_0}(\xi) = f_{\alpha_1}(\xi)$.

Then \mathcal{P} is κ^+ -c.c., κ -lattice, and κ -MRP-strongly proper, so an application of FA_{κ^+}({ \mathcal{P} }) gives us a function $G : \kappa^+ \longrightarrow \{0, 1\}$ which in fact uniformizes $\langle f_\alpha : \alpha \in S_{\kappa}^{\kappa^+} \rangle$ modulo co-bounded sets — for each $\alpha \in S_{\kappa}^{\kappa^+}$ there is $p(\alpha) < \alpha$ such that $G(\xi) = f_\alpha(\xi)$ for all $\xi \in C_\alpha \setminus p(\alpha)$. \Box

Getting rid of g.l.b.'s?

(日) (日) (日) (日) (日) (日) (日)

No:

Theorem

(Shelah) Suppose $\kappa\geq\omega_1$ is a regular cardinal and $\kappa^{<\kappa}=\kappa.$ Then

 $FA_{\kappa^+}(\{\mathcal{P} : \mathcal{P} < \kappa \text{-directed closed}, \kappa^+\text{-c.c.}, \text{ and } \kappa \text{-strongly proper}\})$ is false.

Proof.

Similar as previous proof, with a natural forcing for adding $G: \kappa^+ \longrightarrow \{0, 1\}$ and clubs $D_{\alpha} \subseteq C_{\alpha}$ (for $\alpha \in S_{\kappa}^{\kappa^+}$) such that $G(\xi) = f_{\alpha}(\xi)$ for all α and all $\xi \in D_{\alpha}$.

κ -strong semiproperness

Let κ be an infinite regular cardinal such that $\kappa^{<\kappa} = \kappa$. Let us say that a forcing notion \mathcal{P} is κ -strongly semiproper if and only if for every large enough θ and every $M \preccurlyeq H(\theta)$ such that $\mathcal{P} \in M$, $|M| = \kappa$, and ${}^{<\kappa}M \subseteq M$, every $p \in \mathcal{P} \cap M$ can be extended to some $q \in \mathcal{P}$ which is κ -strongly (M, \mathcal{P}) -semigeneric, i.e., there is some $\sigma \in [H(\theta)]^{\leq \kappa}$ such that

(1)
$$\operatorname{Hull}(M, \sigma) \cap \kappa^+ = M \cap \kappa^+$$
, and

(2) q is strongly (Hull(M, σ), \mathcal{P})-generic.

Given infinite regular κ , let the κ -Strongly Semiproper Forcing Axiom be

 $FA_{\kappa^+}(\{\mathcal{P} : \mathcal{P} \ \kappa\text{-lattice and } \kappa\text{-strongly semiproper}\})$

A family of reflection principles

Given an infinite regular κ and a cardinal $\mu \leq \kappa$, let

 $SRP(\kappa^+, \mu)$

be the following reflection principle: Suppose *X* is a set and $S \subseteq [X]^{\kappa}$. If λ is such that $X \in H(\lambda)$, there is a \subseteq -continuous \in -chain $(M_i)_{i < \kappa^+}$ such that for each $i < \kappa^+$, $M_i \preccurlyeq H(\lambda)$ and $|M_i| = \kappa$, and if $cf(i) = \kappa$:

M_i ∩ *X* ∉ S if and only if there is no σ ∈ [X]^{≤μ} such that
(a) Hull(*M_i* ∪ σ) is a κ⁺-end-extension of *M* (i.e., Hull(*M_i* ∪ σ) ∩ κ⁺ = *M_i* ∩ κ⁺), and
(b) Hull(*M_i* ∪ σ) ∩ *X* ∈ S.

Easy: The κ -Strongly Semiproper Forcing Axiom implies SRP(κ^+, κ).

Theorem

For every $\kappa \geq \omega_1$, $SRP(\kappa^+, \omega)$ is false. In particular, the κ -Strongly Semiproper Forcing Axiom is false.

Proof: Let S be the collection of $X \in [\kappa^{++}]^{\kappa}$ such that $cf(X) = \omega$.

By an application of SRP(κ^+, ω) to S there is a \subseteq -continuous \in -chain $(M_i)_{i < \kappa^+}$ of models of size κ such that for each $i < \kappa^+$ such that $cf(i) = \kappa$, if

 $\mathsf{cf}(M_i \cap \kappa^{++}) \neq \omega,$

(日) (日) (日) (日) (日) (日) (日)

then there is no countable $\sigma \subseteq \kappa^{++}$ such that

- Hull $(M_i \cup \sigma) \cap \kappa^+ = M_i \cap \kappa^+$ and
- cf(Hull($M_i \cup \sigma$) $\cap \kappa^{++}$) = ω .

Claim:

$S = \{i \in S_{\kappa}^{\kappa^+} : \text{ there is no countable } \sigma \subseteq \kappa^{++} \text{ as above for } M_i\}$

cannot be stationary: Suppose *S* is stationary. Let $\alpha \in \kappa^{++}$, $cf(\alpha) = \omega$, such that $F''[\alpha]^{<\omega} \cap \kappa^{++} \subseteq \alpha$ for some $F : [H(\lambda)]^{<\omega} \longrightarrow H(\lambda)$ generating club of elementary submodels *R* such that $(M_i)_{i < \kappa^+} \in R$.

Now we can easily find $X \subseteq \alpha$ cofinal in α , such that $R = F^{"}[X]^{<\omega}$ is such that $|R| = \kappa$ and $i := R \cap \kappa^+ \in S$. Let $\sigma \subseteq X$ be countable and cofinal in X. But then R is a κ^+ -end-extension of M_i and $cf(R \cap \kappa^{++}) = \omega$, and so σ witnesses that $M_i \notin S$. Contradiction. \Box

Now we get club-many *i* such that if $cf(i) = \kappa$, then $cf(M_i \cap \kappa^{++}) = \omega$. But this is impossible since $(sup(M_i \cap \kappa^{++})) : i < \kappa^+)$ is strictly increasing and continuous and therefore $cf(M_i \cap \kappa^{++}) = \kappa > \omega$ if $cf(i) = \kappa$. \Box

Claim:

 $S = \{i \in S_{\kappa}^{\kappa^+} : \text{ there is no countable } \sigma \subseteq \kappa^{++} \text{ as above for } M_i\}$

cannot be stationary: Suppose *S* is stationary. Let $\alpha \in \kappa^{++}$, $cf(\alpha) = \omega$, such that $F''[\alpha]^{<\omega} \cap \kappa^{++} \subseteq \alpha$ for some $F : [H(\lambda)]^{<\omega} \longrightarrow H(\lambda)$ generating club of elementary submodels *R* such that $(M_i)_{i < \kappa^+} \in R$.

Now we can easily find $X \subseteq \alpha$ cofinal in α , such that $R = F^{*}[X]^{<\omega}$ is such that $|R| = \kappa$ and $i := R \cap \kappa^+ \in S$. Let $\sigma \subseteq X$ be countable and cofinal in X. But then R is a κ^+ -end-extension of M_i and $cf(R \cap \kappa^{++}) = \omega$, and so σ witnesses that $M_i \notin S$. Contradiction. \Box

Now we get club-many *i* such that if $cf(i) = \kappa$, then $cf(M_i \cap \kappa^{++}) = \omega$. But this is impossible since $(sup(M_i \cap \kappa^{++})) : i < \kappa^+)$ is strictly increasing and continuous and therefore $cf(M_i \cap \kappa^{++}) = \kappa > \omega$ if $cf(i) = \kappa$. \Box

Saturation

(日) (日) (日) (日) (日) (日) (日)

Given an infinite regular κ and a stationary $S \subseteq \kappa^+$, $NS_{\kappa^+} \upharpoonright S$ is saturated iff every collection \mathcal{A} of stationary subsets of S such that $S_0 \cap S_1$ is nonstationary for all $S_0 \neq S_1$ in \mathcal{A} is such that $|\mathcal{A}| \leq \kappa^+$.

Fact

If κ is an infinite regular cardinal, SRP(κ^+ , 1) implies that $NS_{\kappa^+} \upharpoonright S_{\kappa}^{\kappa^+}$ is saturated.

Proof: Let \mathcal{A} be a collection of stationary subsets of $S_{\kappa}^{\kappa^+}$ with pairwise nonstationary intersection. We want to show $|\mathcal{A}| \leq \kappa^+$. Let $X = \mathcal{A} \cup \kappa^+$ and let \mathcal{S} be the collection of $Z \in [X]^{\kappa}$ such that

- $\delta_Z := Z \cap \kappa^+ \in \kappa^+$ and
- $\delta_Z \in S$ for some $S \in A \cap Z$.

Let $(M_i)_{i < \kappa^+}$ be a reflecting sequence for S as given by SRP $(\kappa^+, 1)$, and suppose $S \in A \setminus \bigcup_{i < \kappa^+} M_i$. Let $M'_i = \operatorname{Hull}_{\lambda}(M_i \cup \{S\})$ for all *i* and note that

$$\{i < \kappa^+ : \operatorname{cf}(i) = \kappa \Rightarrow M'_i \cap \kappa^+ = M_i \cap \kappa^+\}$$

contains a club $C \subseteq \kappa^+$.

Hence, for every $i \in C \cap S$ there is some $S(i) \in M_i$ such that $M_i \cap \kappa^+ \in S(i)$. By Fodor's lemma there is some S_0 such that

 $T = \{i \in S \cap C : S(i) = S_0\}$

is stationary. But that is a contradiction since $M_i \cap \kappa^+ \in S \cap S_0$ for every $i \in T$ and therefore $S \cap S_0$ is stationary.

Let us say that a forcing \mathcal{P} is κ -strongly 1-semiproper iff it satisfies the definition of ' κ -strongly semiproper' replacing Hull(M, σ), for $|\sigma| \leq \kappa$, with Hull(M, σ), for $|\sigma| \leq 1$.

 κ -strong 1-semiproperness is the least demanding excursion of κ -strong properness into the realm of semiproperness.

 $FA_{\kappa^+}(\{\mathcal{P} : \mathcal{P} \ \kappa\text{-lattice}, \ \kappa\text{-strongly 1-semiproper}\})$

implies SRP(κ^+ , 1) and therefore the saturation of NS $_{\kappa^+} \upharpoonright S_{\kappa}^{\kappa^+}$.

Question: Is FA_{κ^+}({ $\mathcal{P} : \mathcal{P} \kappa$ -lattice, κ -strongly 1-semiproper}) consistent for any $\kappa \geq \omega_1$?

Question: Suppose $\kappa \ge \omega_1$ is regular and $NS_{\kappa^+} \upharpoonright S_{\kappa}^{\kappa^+}$ is saturated. Does it follow that GCH cannot hold below κ ?

On high properness when adding reals

Neeman considers side conditions consisting of *nodes* of either of the following types.

- (1) (Countable type elementary) These are models $M \preccurlyeq H(\theta)$ such that $|M| = \aleph_0$.
- (2) (Type ω_1) These are IC models $N \preccurlyeq H(\theta)$ such that $|N| = \aleph_1$.
- (3) (Countable type tower.) These are countable ∈-chains *T* of nodes of type ω₁ such that *T* ∩ *N* ∈ *N* for all *N* ∈ *T*.

(日) (日) (日) (日) (日) (日) (日)

Definition

(Neeman) A *two-size side condition* is a finite set \mathcal{N} of nodes of the above types which is \in -increasing (i.e., every node belongs to the next), and closed under intersection in the sense that:

- If N, M ∈ N, N ∈ M, N of type ω₁, and M countable elementary, then M ∩ N ∈ N.
- If N, T ∈ N, N ∈ T, T of type tower, and T ∩ N ≠ Ø, then there is a tower T' ⊇ T ∩ N occurring in N before N.

(日) (日) (日) (日) (日) (日) (日)

Definition

(Neeman) A partial order \mathcal{P} is *two-size proper* if for every large enough θ there is a function $f : [H(\theta)]^{<\omega} \longrightarrow H(\theta)$ such that for every two-size side condition \mathcal{N} with all models involved closed under f, every $Q \in \mathcal{N}$, and every $p \in \mathcal{P} \cap Q$, if p is (R, \mathcal{P}) -generic for every $R \in \mathcal{N} \cap Q$, then there is $q \leq_{\mathcal{P}} p$ which is (R, \mathcal{P}) -generic for all $R \in \mathcal{N}$. (If \mathcal{T} is a tower, a condition is $(\mathcal{T}, \mathcal{P})$ -generic iff it is (N, \mathcal{P}) -generic for all $N \in \mathcal{T}$.)

Theorem

(Neeman) If κ is a supercompact cardinal, then there is a partial order $\mathcal{P} \subseteq V_{\kappa}$ forcing $FA_{\aleph_2}(\{\mathcal{P} : \mathcal{P} \text{ two-size proper}\})$.

A partial order \mathcal{P} is *two-size strongly semiproper* if for every large enough θ there is a function $f : [H(\theta)]^{<\omega} \longrightarrow H(\theta)$ such that for every two-size side condition \mathcal{N} with all models involved closed under f, every $Q \in \mathcal{N}$, and every $p \in \mathcal{P} \cap Q$, if p is (R, \mathcal{P}) -strongly ω_2 -semigeneric for every $R \in \mathcal{N} \cap Q$, then there is $q \leq_{\mathcal{P}} p$ which is (R, \mathcal{P}) -strongly ω_2 -semigeneric for all $R \in \mathcal{N}$.

Theorem $FA_{\aleph_2}(\{\mathcal{P} : \mathcal{P} \text{ two-size strongly semiproper}\})$ implies $SRP(\omega_2, \omega)$.

Corollary $FA_{\aleph_2}(\{\mathcal{P} : \mathcal{P} \text{ two-size strongly semiproper}\})$ is inconsistent.

(日) (日) (日) (日) (日) (日) (日)

Two-size strong 1-semiproperness is the least demanding excursion of two-size properness into the realm of semiproperness.

 $FA_{\aleph_2}(\{\mathcal{P} : \mathcal{P} \text{ two-size strongly 1-semiproper}\}) \text{ implies } SRP(\omega_2, 1).$

Question: Is $FA_{\aleph_2}(\{\mathcal{P} : \mathcal{P} \text{ two-size strongly 1-semiproper}\})$ consistent?

In joint work with Veličković, and using forcing with virtual models with generators, we do get consistency of a shadow of SRP(ω_2 , 1) but which unfortunately doesn't seem to be enough to get saturation of NS $_{\omega_2} \upharpoonright S_{\omega_1}^{\omega_2}$.

On high stationary reflection

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (Sakai)

- (1) $WRP_{\omega_1} \upharpoonright IA_{\omega}$ implies $2^{\aleph_0} \leq \aleph_3$.
- (2) If κ is supercompact, then the ℵ₁-support iteration of length κ with mixed support for collapsing α to ω₂ (for α < κ) with conditions of size ℵ₁ while also adding Cohen reals forces WRP_{ω1} ↾ IA_ω + 2^{ℵ0} = ℵ₃.

Some final questions:

Question: Is there any consistent high analogue R^* of any reflection principle R following from MM⁺⁺ such that R^* implies $2^{\aleph_0} = \aleph_3$?

Question: Is there any Π_2 sentence σ such that the following holds?

- (1) ZFC proves that if $H(\omega_3) \models \sigma$, then $2^{\aleph_0} = \aleph_3$.
- (2) For some reasonable large cardinal axiom LC, ZFC+ LC proves that it is forcible that $H(\omega_3) \models \sigma$.

(日) (日) (日) (日) (日) (日) (日)

Related to the last question in the previous slide but for $H(\omega_2)$:

Conjecture: BFA({ $\mathcal{Q} : \mathcal{Q} \omega$ -proper}) implies $2^{\aleph_0} = \aleph_2$.